Skip to main content

Dental pulp matrix — collagens and glycoproteins

  • Chapter
Dynamic Aspects of Dental Pulp

Abstract

Dental pulp, in common with other connective tissues, contains cells, fibres and ground substance, these extracellular components being

Transmission electron micrograph of rabbit incisor dental pulp. After fixing glutaraldehyde sections were stained with uranyl acetate and lead acitate. Few collagen fibrils are evident. Magnification x37500. (Courtesy of Dr C. J. P. Jones.)

responsible for the properties and functioning of the tissue. Dental pulp functions in the production and maintenance of dentine, and as such contains a rich vascular system to maintain a supply of nutrients for both dental pulp fibroblasts and odontoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alitalo, K., Myllyla, R., Sage, H., Pritzl, P., Vaheri, A. and Pornstein, P. (1982) Biosynthesis of type V procollagen by A204, a human rhabdomyosarcoma cell line. J. Biol. Chem, 257, 9016–9024.

    Google Scholar 

  • Ayad, S., Chambers, C. A., Berry, L., Shuttleworth, C. A. and Grant, M. E. (1986) Type VI collagen and glycoprotein MFPI are distinct components of the extracellular matrix. Biochem. J, 236, 299–305.

    Google Scholar 

  • Ayad, S., Chambers, C. A., Shuttleworth, C. A. and Grant, M. E. (1985) Isolation from bovine elastic tissue of collagen type VI and characterisation of its form in vivo. Biochem. J,230, 465 174.

    Google Scholar 

  • Baba, T., Takagi, M. and Yagasaki, H. (1985) Ultrastructural cytochemistry of carbohydrates in microfibrils associated with the amorphous elastin in the monkey aorta. Anat. Rec,213, 385–393.

    Article  Google Scholar 

  • Bachinger, H. P., Doege, K. J., Petschek, J. P., Fessler, L. I. and Fessler, J. H. (1982) Structural implications from an electron microscopic comparison of procollagen V with procollagen I, pC-collagen I, procollagen IV and a Drosophila procollagen. J. Biol. Chem, 257, 14590–14596.

    Google Scholar 

  • Becker, U., Timpl, R., Helle, O. and Prockop, D. J. (1976) NH-terminal extension. of skin collagen from sheep with a genetic defect in conversion of procollagen to collagen. Biochemistry, 15, 2853–2857.

    Article  Google Scholar 

  • Bradamante, Z., Pecina-Hrncevic, A. and Ciglar, I. (1980) Oxytalan fibres in human dental pulp. Experientia, 36, 1210–1211.

    Article  Google Scholar 

  • Bressan, G. M., Castellani, I., Colombatti, A. and Volpin, D. (1983) Isolation and characterisation of a 115,000 dalton matrix-associated glycoprotein from chick aorta. J. Biol. Chem, 258, 13262–13267.

    Google Scholar 

  • Brown, R. A., Shuttleworth, C. A. and Weiss, J. B. (1978) Three new alpha-chains of collagen from a non-basement membrane source. Biochem. Biophys. Res. Commun, 80, 866–870.

    Article  Google Scholar 

  • Bruns, R. R., Press, W., Engvall, E., Timpl, R. and Gross, J. (1986) Type VI collagen in extracellular 100 nm periodic filaments and fibrils: Identification by immunoelectron microscopy. J. Cell Biol, 103, 393 104.

    Google Scholar 

  • Burgeson, R. E., El Adli, F. A., Kaitila, I. I. and Hollister, D. W. (1976) Fetal membrane collagens: Identification of two new collagen alpha-chains. Proc Natl Acad. Sci, 73, 2579–2583.

    Article  Google Scholar 

  • Burgeson, R. E., Hebda, P. A., Morris, N. P. and Hollister, D. W. (1982) Human cartilage collagens: Comparison of cartilage collagen with human type V collagen. J. Biol. Chem, 257, 7852–7856.

    Google Scholar 

  • Burgeson, R. E. and Hollister, D. W. (1979) Collagen heterogeneity in human cartilage: Identification of several new collagen chains. Biochem. Biophys. Res. Commun, 42, 1024–1027.

    Google Scholar 

  • Burgeson, R. E. and Morris, N. P. (1987) The collagen family of proteins, in Connective tissue disease. Molecular pathology of the extracellular matrix (eds J. Uitto and A. J. Perejda) Marcel Dekker, New York, pp. 3–28.

    Google Scholar 

  • Butler, W. T., Finch, J. E. and Miller, E. J. (1977) The covalent structure of cartilage collagen. Evidence for sequence heterogeneity of bovine a1(II) chains. J. Biol. Chem, 252, 639–643.

    Google Scholar 

  • Chambers, C. A., Shuttleworth, C. A., Ayad, S. and Grant, M. E. (1984) Collagen heterogeneity and quantification in developing nuchal ligament. Biochem. J,220, 385–394.

    Google Scholar 

  • Chen, L. B., Murray, A., Segal, R. A., Bushnell, A. and Walsh, M. L. (1978) Studies on intracellular LETS glycoprotein matrices. Cell, 14, 377–391.

    Article  Google Scholar 

  • Chung, E., Rhodes, R. K. and Miller, E. J. (1976) Isolation of three collagenous components of probable basement membrane origin from several tissues. Biochem. Biophys. Res. Commun,71, 1167–1171.

    Article  Google Scholar 

  • Cohen, E. S. and Calkins, A. (1959) Electron microscopic observations on a fibrous component of amyloid of diverse origins. Nature, 183, 1202–1203.

    Article  Google Scholar 

  • Corvetti, G., Cameron-Curry, P., Sisto-Daneo, L., Marini, R. and Modica, F. (1984) Immunohistochemical localisation of fibronectin in structures of the human oral cavity, dental pulp and gingiva. Arch. Anat. Microscop. Morph. Exp, 73 205–215.

    Google Scholar 

  • de Crombrugghe, B. and Schmidt, A. (1987) Structure and expression of collagen genes. Methods Enzymol, 144 61–83.

    Article  Google Scholar 

  • Dublet, B. and van der Rest, M. (1987) Type XII collagen is expressed in embryonic chick tendons. J. Biol. Chem, 262 17724–17727.

    Google Scholar 

  • Engel, J., Taylor, W., Paulson, M., Sage, H. and Hogan, B. (1987) Calcium binding domains and calcium-induced conformational transition of SPARC/ BM40/osteonectin, an extracellular glycoprotein expressed in mineralised and non-mineralised tissues. Biochemistry, 26 6958–6964.

    Article  Google Scholar 

  • Fanning, J. C. and Cleary, E. G. (1985) Identification of glycoproteins associated with elastin-associated microfibrils. J. Histochem. Cytochem, 33 287–294.

    Article  Google Scholar 

  • Fessier, J. H. and Fessier, L. I. (1978) Biosynthesis of procollagen. Ann. Rev. Biochem, 47, 129–142.

    Article  Google Scholar 

  • Franzen, A. and Heinegard, D. (1985) Isolation and characterisation of two sialoproteins present only in bone calcified matrix. Biochem. J, 232 715–724.

    Google Scholar 

  • Gibson, M. A. and Cleary, E. G. (1985) CL-glycoprotein is the tissue form of type VI collagen. J. Biol. Chem, 260 11149–11159.

    Google Scholar 

  • Gibson, M. A. and Cleary, E. G. (1987) The immunohistochemical localisation of microfibril-associated glycoprotein (MAGP) in elastic and non-elastic tissues. Immunol. Cell. Biol, 65 345–356.

    Article  Google Scholar 

  • Gibson, M. A., Hughes, J. L., Fanning, J. C. and Cleary, E. G. (1986) The major antigen of the elastin-associated microfibrils is a 31-KDa glycoprotein. J. Biol. Chem, 261 11429–11436.

    Google Scholar 

  • Gordon, M., Gerecke, D. and Olsen, B. R. (1987) Type XII collagen: Distinct extracellular matrix component discovered by cDNA cloning. Proc. Natl. Acad. Sci, 84 6040–6044.

    Article  Google Scholar 

  • Hay, E. D. (1978) Fine structure of embryonic matrices and their relation to the cell surface in ruthenium red-fixed tissues. Growth, 42 399–423.

    Google Scholar 

  • Hayman, E., Pierschbacher, M., Ohgren, Y. and Ruoslahti, E. (1983) Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc. Natl Acad,Sci, 80 4003–4007.

    Article  Google Scholar 

  • Hessle, H. and Engvall, E. (1984) Type V collagen: Studies on its localisation, structure and biosynthetic form with monoclonal antibodies. J. Biol. Chem, 259 3955–3961.

    Google Scholar 

  • Hewitt, A., Varner, H., Silver, M., Desau, W., Wilkes, C. and Martin, G. R. (1982) The isolation and partial characterisation of chondronectin, an attachment factor for chondrocytes. J. Biol. Chem,257 2330–2334.

    Google Scholar 

  • Kapoor, R., Bornstein, P. and Sage, H. (1986) Type VIII collagen from bovine Descemet’s membrane: Structural characterisation of a triple helical domain. Biochemistry, 25 3930–3937.

    Article  Google Scholar 

  • Kivirikko, K. I. and Myllya, M. (1984) Collagen biosynthesis, in Extracellular matrix biochemistry (eds K. A. Piez and A. H. Reddi), Elsevier, New York, pp. 83–96.

    Google Scholar 

  • Knight, K. R., Ayad, S., Shuttleworth, C. A. and Grant M. E. (1984) A collagenous glycoprotein found in dissociative extracts of foetal bovine nuchal ligament. Biochem. J, 220 395–403.

    Google Scholar 

  • Kuhn, K. (1986) The collagen family: Variations in the molecular structure and supermolecular structure, in Rheumatology vol. 10. Connective tissue: Biological and clinical aspects (eds K. Kuhn and T. Krieg), Karger, Basel, pp. 29–69.

    Google Scholar 

  • Kirkinen, M., Alitalo, K., Vaheri, A., Stenman, S. and Saxen, L. (1979) Fibronectin in the development of embryonic chick eye. Dev. Biol,69 589–600.

    Article  Google Scholar 

  • Lapiere, C. M. and Nusgens, B. (1974) Polymerisation of procollagen in vitro. Biochim. Biophys. Acta, 342 237–241.

    Google Scholar 

  • Lechner, J. H. and Kalnitsky, G. (1981) The presence of large amounts of type III collagen in bovine dental pulp and its significance with regard to the mechanism of dentinogenesis. Arch. Oral Biol, 26 265–273.

    Article  Google Scholar 

  • Lesot, H., Karcher-Djuricic, V., Mark, M., Meyer, J. M. and Ruch, J. V. (1985) Dental cell interaction with extracellular matrix constituents: Type I collagen and fibronectin. Differentiation, 29 176–181.

    Article  Google Scholar 

  • Lesot, H., Karcher-Djuricic, V. and Ruch, J. V. (1981a) Synthesis of collagen type I type I trimer and type III by embryonic mouse dental epithelial and mesenchymal cells in vitro. Biochim. Biophys. Acta, 656 206–212.

    Google Scholar 

  • Lesot, H., Osman, M. and Ruch, J V. (1981b) Immunofluorescent localisation of collagens, fibronectin and laminin during terminal differentiation of odontoblasts. Devel. Biol,82 371–381.

    Google Scholar 

  • Light, N. D. (1982) Estimation of types I and III collagens in whole tissues by quantitation of CNBr peptides on SDS-polyacrylamide gels. Biochim. Biophys. Acta, 702 30–36.

    Article  Google Scholar 

  • Limeback, H. (1987) Enamel proteins and collagen production by cells subcul- tured from porcine tooth bud explants. Biochem. Cell Biol, 65 698–709.

    Article  Google Scholar 

  • Linde, A., Johannson, S., Jonsson, R. and Jontell, M. (1982) Localisation of fibronectin during dentinogenesis in rat incisor. Arch. Oral Biol,27 1069–1073.

    Article  Google Scholar 

  • Linde, A., Jontell, M., Lundgreen, T., Nilson, B. and Svanberg, U. (1983) Non- collagenous proteins of rat compact bone. J. Biol. Chem, 258 1698–1705.

    Google Scholar 

  • Lisenmayer, T. F., Bruns, R. R., Mentzer, P. and Mayne, R. (1986) Type VI collagen: Immunohistochemical identification as a filamentous component of the extracellular matrix of the developing avian corneal stroma. Devel.Biol, 118 425–431.

    Article  Google Scholar 

  • Mackie, E. J. Chiquet-Ehrisman, R., Pearson, C. A., Inaguma, Y., Taya, K., Kawarda, Y. and Sakakura, T. (1987) Tenascin is a stromal marker for epithelial malignancy in the mammary gland. Proc. Natl Acad. Sci,84 46214625.

    Article  Google Scholar 

  • Majack, R. A., Cook, S. C. and Bornstein, P. (1986) Control of smooth muscle cell growth by components of the extracellular matrix: Autocrine role for thrombospondin. Proc. Natl Acad. Sci, 83 9050–9054.

    Article  Google Scholar 

  • Mayne, R. and Burgeson, R. E. (eds) (1987) Structure and function of collagen types Academic Press, Orlando, FL.

    Google Scholar 

  • Mayne, R., Vail, M. S. and Miller, E. J. (1975) Analysis of changes in collagen biosynthesis that occur when chick chondrocytes are grown in 5-bromo-2deoxyuridine. Proc. Natl Acad. Sci, 72 4511–4517.

    Article  Google Scholar 

  • Miller, E. J. (1985) The collagens. Ann. NY Acad. Sci, 460 1–11.

    Article  Google Scholar 

  • Miller, E. J. and Gay, S. (1987) The collagens: An overview and update. Methods Enzymol, 144 3–61.

    Article  Google Scholar 

  • Morris, N. P., Keene, D. R., Glanville, R. W., Bentz, P. and Burgeson, R. E. (1986) The tissue form of type VII collagen is an antiparallel dimer. J. Biol. Chem, 261 5638–5644.

    Google Scholar 

  • Mosher, D. (1984) Physiology of fibronectin. Ann. Rev. Med, 35 561–575.

    Article  Google Scholar 

  • Narayanan, A. S. and Page, R. C. (1983) Biosynthesis and regulation of type V collagen in diploid human fibroblasts. J. Biol. Chem, 258 11694–11698.

    Google Scholar 

  • Odermatt, E., Risteli, V., Van Delden, V. and Timpl, R. (1983) Structural diversity and domain composition of a unique collagenous fragment (interstitial collagen) obtained from human placenta. Biochem. J, 211 295–301.

    Google Scholar 

  • Olsen, B. R., Guzman, N. A., Engel, J., Condit, C. and Aase, S. (1977) Purification and characterisation of a peptide for the carboxyterminal region of chick tendon procollagen type I. Biochemistry, 16 3030–3036.

    Article  Google Scholar 

  • Sakai, L. Y., Keene, D. R. and Engvall, E. (1986) Fibrillin, a new 350kD glycoprotein is a component of extracellular microfibrils. J. Cell Biol, 103 2499–2509.

    Article  Google Scholar 

  • Serafini-Fracassini, A., Ventrella, G., Field et al (1981) Characterisation of a structural glycoprotein from bovine ligamentum nuchae exhibits dual amine oxidase activity. Biochemistry, 20 5424–5429.

    Article  Google Scholar 

  • Shuttleworth, C. A., Berry, L., Ayad, S. and Grant, M. E. (1985) Type VI collagen synthesis by human dental pulp fibroblasts in culture. J. Dent. Res, 64 674.

    Google Scholar 

  • Shuttleworth, C. A., Berry, L. and Wilson, N. H. F. (1980) Collagen synthesis in rabbit dental pulp fibroblast cultures. Arch. Oral Biol, 25 201–205.

    Article  Google Scholar 

  • Shuttleworth, C. A., Berry, L. and Wilson, N. H. F. (1982) Biosynthesis of glycoproteins by rabbit dental pulp fibroblasts in culture. Arch. Oral Biol, 27 645–650.

    Article  Google Scholar 

  • Shuttleworth, C. A., Ward, J. L. and Hirschmann, P. N. (1978) The presence of type III collagen in the developing tooth. Biochim. Biophys. Acta,535 348–355.

    Google Scholar 

  • Steinman, B., Tuderman, L., Peltonen, L., Martin, G. R., McKusick, V. A. and Prockop, D. J. (1980) Evidence for a structural mutation of procollagen type I in a patient with the Ehlers—Danlos syndrome type VII. J. Biol. Chem, 255 8887–8892.

    Google Scholar 

  • Takagi, T., Saito, S., Kuboki, Y. and Sasaki, S. (1975) Age-related changes of collagen of periodontal membrane, gingiva and dental pulp. Jap. J. Oral Biol, 17 432–441.

    Article  Google Scholar 

  • Termine, J. D., Klienman, H. K., Whitson, S. W., Conn, K. M., McGarvey, M. L. and Martin, G. R. (1981) Osteonectin, a bone specific protein linking mineral to collagen. Cell, 26 99–105.

    Article  Google Scholar 

  • Thesleff, I. (1986) Dental papilla cells in culture: Comparison of morphology, growth and collagen synthesis with two dental related embryonic mesenchymal cell populations. Cell Differentiation, 18 189–198.

    Article  Google Scholar 

  • Thesleff, I., Mackie, E. J., Vainio, S. and Chiquet-Ehrisman, R. (1988) Submitted for publication. Quoted in Mackie et al (1987) J. Cell Biol, 105 2569–2579.

    Google Scholar 

  • Thesleff, I., Partanen, A. M., Kuusela, P. and Lehtonen, E. (1987) Dental papilla cells synthesize but do not secrete fibronectin in culture. J. Dent. Res, 66 1107–1115.

    Article  Google Scholar 

  • Thesleff, I Stenman, S., Vaheri, A. and Timpl, R. (1979) Changes in matrix proteins, fibronectin and collagen during differentiation of mouse tooth germs. Devel. Biol,70 116–126.

    Article  Google Scholar 

  • Timpl, R., Rohde, H., Robey, P., Rennard, S., Foidart, J. M. and Martin, G. R. (1979) Laminin: A glycoprotein from basement membrane. J. Biol. Chem, 254 9933–9937.

    Google Scholar 

  • Trueb, B. and Bornstein, P. (1984) Characterisation of the precursor form of type VI collagen. J. Biol. Chem,259 8597–8604.

    Google Scholar 

  • Tung, P. S., Domenicucci, C., Wasi, S. and Sodek, J. (1985) Specific immunohistochemical localisation of osteonectin and collagen types I and III in fetal and adult porcine dental tissues. J. Histochem. Cytochern, 33, 531–540.

    Article  Google Scholar 

  • Uitto, J. (1979) Collagen polymorphism: Isolation and partial characterisation of alpha-trimer molecules in normal human skin. Arch. Biochem. Biophys, 192, 371–376.

    Article  Google Scholar 

  • Uitto, V. J. and Antila, R. (1971) Characterisation of collagen biosynthesis in rabbit dental pulp in vitro. Acta Odont. Scand,29, 609–617.

    Article  Google Scholar 

  • van Amerongen, J. P., Lemmens, I. G. and Tonino, G. J. M. (1983) Concentration, extractability and characterisation of collagen in human dental pulp. Arch. Oral Biol,28, 339–345.

    Article  Google Scholar 

  • van Amerongen, J. P., Lemmens, I. G. and Tonino, G. J. M. (1984) Immunofluorescent localisation and extractability of fibronectin in human dental pulp. Arch. Oral Biol, 29, 93–99.

    Article  Google Scholar 

  • Wohllebe, M. and Carmichael, D. J. (1978) Type I-trimer and type I collagen in neutral salt soluble lathyritic rat dentine. Eur. J. Biochem, 92, 183–187.

    Article  Google Scholar 

  • Yamada, K. (1983) Cell surface interactions with extracellular materials. Ann. Rev. Biochem, 52, 761–799.

    Article  Google Scholar 

  • Yamada, K. and Kennedy, D. (1979) Fibroblast cellular and plasma fibronectins are similar but not identical. J. Cell Biol?/span> 80, 492–498.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Shuttleworth, C.A. (1990). Dental pulp matrix — collagens and glycoproteins. In: Dynamic Aspects of Dental Pulp. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0421-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0421-7_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6675-4

  • Online ISBN: 978-94-009-0421-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics