Skip to main content

Enzymes of the glycolytic pathway — phosphofructokinase, pyruvate kinase and lactate dehydrogenase

  • Chapter
Book cover Dynamic Aspects of Dental Pulp
  • 296 Accesses

Abstract

Many of the vital reactions in cells, such as the synthesis of biological macromolecules, active transport across membranes and the generation of force and movement, are driven by the energy provided by the hydrolysis of ATP. Glucose is the principal food compound of many cells for the ATP production. By a sequence of reactions termed glycolysis, a glucose molecule with six carbon atoms is converted to two pyruvate molecules each with three carbon atoms, and finally two ATP molecules are produced. For most animal cells, glycolysis is only a prelude to subsequent reaction steps that occur in mitochondria: under aerobic conditions, one pyruvate molecule is eventually broken down into three carbon dioxide and three water molecules through the citric acid cycle (tricarboxylic acid cycle or Krebs cycle) and oxidative phosphorylation, yielding far more ATP molecules. Although the generation of ATP through glycolysis is relatively inefficient, it is the most fundamental and important pathway because: (a) it is the predominant and only metabolic pathway from glucose to pyruvate which can then be catabolized in the TCA cycle; (b) it produces ATP even in the absence of oxygen; and (c) it produces intermediates needed for the synthesis of fundamental biological materials such as amino acids and fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, Y. L. and Larmas, M. (1978) A quantitative study of lactate and malate dehydrogenase and aspartate transaminase activities in the human dental pulp. Arch. Oral Biol., 23, 925–928.

    Article  Google Scholar 

  • Birktoft, J. J., Fernley, R. T., Bradshow, R. A. and Banaszak, L. J. (1982) Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: Mitochondrial and cytoplasmic malate dehydrogenase form a homologous system with lactate dehydrogenase. Proc. Natl Acad. Sci. USA, 79, 6166–6170.

    Article  Google Scholar 

  • Blair, J. B., Cimbala, M. A., Foster, J. L. and Morgan, R. A. (1976) Hepatic pyruvate kinase. Regulation by glucagon, cyclic adenosine 3’:5’monophosphate, and insulin in the perfused rat liver. J. Biol. Chem., 251, 3756–3762.

    Google Scholar 

  • Bloxham, D. P. and Lardy, H. A. (1973) Phosphofructokinase, in Enzymes, (ed. P. D. Boyer), 3rd edn vol. 8. Academic Press, New York, pp. 239–278.

    Google Scholar 

  • Castano, J. G., Nieto, A. and Feliu, J. E. (1979) Inactivation of phosphofructo- kinase by glucagon in rat hepatocytes. J. Biol. Chem., 254, 5576–5579.

    Google Scholar 

  • Chern, C. J. and Croce, C. M. (1975) Confirmation of the synteny of the human gene for mannose phosphate isomerase and pyruvate kinase and of their assignment to chromosome 15. Cytogenet. Cell Genet.,15, 299–305.

    Article  Google Scholar 

  • Chern, C. J., Kennett, R., Engel, E., Mellman, W. J. and Croce, C. M. (1977) Assignment of the structural genes for the alpha subunit of hexosaminidase A, mannosephosphate isomerase, and pyruvate kinase to the region q 22qter of human chromosome 15. Somatic Cell Genet., 3, 553–560.

    Article  Google Scholar 

  • Claus, T. H., Schlumpf, J. R., El-Maghrabi, M. R. and Pilkis, S. J. (1982) Regulation of the phosphorylation and activity of 6-phosphofructo-1-kinase in isolated hepatocytes by a-glycerophosphate and fructose 2,6bisphosphate. J. Biol. Chem., 257, 7541–7548.

    Google Scholar 

  • Dunaway, G. A., Jasten, T. P. and Kolm, P. (1986) Alteration of 6phosphofructo-1-kinase isozyme pools during heart development and aging. J. Biol. Chem.,261, 17170–17173.

    Google Scholar 

  • Eccles, J. D. (1965) The effects of reducing function and stopping eruption on the periodontium of the rat incisor. J. Dent. Res., 44, 860–868.

    Article  Google Scholar 

  • Engström, L. (1978) The regulation of liver pyruvate kinase by phosphorylationdephosphorylation. Curr. Top. Cell Regul., 13, 29–51.

    Google Scholar 

  • Engström, C. and Röckert, H. O. E. (1980) Effect of local anesthetics on aerobic and anaerobic metabolism of the dental pulp. Swed. Dent. J., 4, 119–123.

    Google Scholar 

  • Eventoff, W., Rossman, M. G., Taylor, S. S., Turff, H. -J., Meyer, H., Keil, W. and Kiltz, H. H. (1977) Structural adaptations of lactate dehydrogenase isozymes. Ions in actions of catecholamines in liver and other tissues. Proc. Natl Acad. Sci. USA, 74, 2677–2681.

    Article  Google Scholar 

  • Exton, J. H. (1980) Mechanisms involved in a-adrenergic phenomena: Role of calcium. Am. J. Physiol.,238, E3—E12.

    Google Scholar 

  • Feliú, J. E., Hue, L. and Hers, H. G. (1976) Hormonal control of pyruvate kinase activity and of gluconeogenesis in isolated hepatocytes. Proc. Natl Acad. Sci. USA, 73, 2762–2766.

    Article  Google Scholar 

  • Fisher, A. K. (1967) Respiratory variations within the normal dental pulp. J. Dent. Res., 46, 424 428.

    Google Scholar 

  • Fisher, A. K. and Schwabe, C. (1969) Respiration and glycolysis in bovine dental pulp. J. Dent. Res., 48, 439–443.

    Article  Google Scholar 

  • Fisher, A. K. and Walters, V. E. (1968) Anaerobic glycolysis in bovine dental pulp. J. Dent. Res., 47, 717–719.

    Article  Google Scholar 

  • Foe, L. G. and Kemp, R. G. (1984) Isozyme composition and phosphorylation of brain phosphofructokinase. Arch. Biochem. Biophys., 228, 503–511.

    Article  Google Scholar 

  • Foe, L. G. and Kemp, R. G. (1985) Isolation and characterization of phosphor-fructokinase c from rabbit brain. J. Biol. Chem., 260, 726–730.

    Google Scholar 

  • Fritz, P. J. (1965) Rabbit muscle lactate dehydrogenase 5: A regulatory enzyme. Science,150, 364–366.

    Article  Google Scholar 

  • Furseth, R. (1968) The resorption processes of human deciduous teeth studied by light microscopy, microradiography and electron microscopy. Arch. Oral Biol., 13, 417–431.

    Article  Google Scholar 

  • Furuya, E. and Uyeda, K. (1980) Regulation of phosphofructokinase by a new mechanism. J. Biol. Chem.,255, 11656–11659.

    Google Scholar 

  • Garrison, J. C. and Borland, M. K. (1978) The effect of glucagon, catecholamines, and the calcium ionophore A23187 on the phosphorylation of rat hepatocyte cytosolic protein. J. Biol. Chem.,253, 7091–7100.

    Google Scholar 

  • Garrison, J. C. and Wager, J. D. (1983) Glucagon and the Cat+-linked hormones angiotensin II, norepinephrine, and vasopressin stimulate the phosphorylation of distinct substrates in intact hepatocytes. J. Biol. Chem.,257, 13135–13143.

    Google Scholar 

  • Goggins, J. F. and Fullmer, H. M. (1966) Dehydrogenase histochemistry of the rat molar pulp. Arch. Oral Biol.,11, 1365–1370.

    Article  Google Scholar 

  • Gordon, T. M., Ranly, D. M. and Boyan, B. D. (1985) The effects of calcium hydroxide on bovine pulp tissue: Variation in pH and calcium concentration. J. Endod., 11,156–160.

    Article  Google Scholar 

  • Hasselgren, G. and Tronstad, L. (1977) Enzyme activity in the pulp following preparation of cavities and insertion of medicaments in cavities in monkey teeth. Acta Odont. Scand.,35, 289–295.

    Article  Google Scholar 

  • Hellinga, H. W. and Evans, P. R. (1985) Nucleotide sequence and high-level expression of the major Escherichia coli phosphofructokinase. Erin J. Biochem., 149, 363–373.

    Article  Google Scholar 

  • Hers, H. G. and Hue, L. (1983) Gluconeogenesis and related aspects of glycolysis. Annu. Rev. Biochem., 52, 617–653.

    Article  Google Scholar 

  • Hews, D. A. and Whitton, P. D. (1980) Control of hepatic glyconeogenesis. Physiol. Rev., 60, 1–50.

    Google Scholar 

  • Holbrook, J. J., Liljas, A., Steindel, S. J. and Rossman, M. G. (1975) Lactate dehydrogenase, in The enzymes (ed. P. D. Boyer), 3rd ed., vol. 11. Academic Press, New York, pp. 191–292.

    Google Scholar 

  • Hosey, M. M., Chatterjee, T., Cohen, A. J. et al. (1980) Increased ATP inhibition of liver phosphofructokinase from genetically diabetic mice. Proc. Natl Acad. Sci. USA, 77, 2497–2499.

    Article  Google Scholar 

  • Hsu, Y. C., Bloxham, D. P. and Giles, I. G. (1987) Phosphorylation of type-L pyruvate kinase in intact hepatocytes. Localization of the phosphorylation site in response to both glucagon and the Cat+-linked agonist phenylephrine. FEBS Lett., 218, 1–6.

    Article  Google Scholar 

  • Imamura, K. and Tanaka, T. (1982) Pyruvate kinase isozymes from rat, in Methods in enzymology (ed. W. A. Wood), vol. 90. Academic Press, New York, pp. 150–165.

    Google Scholar 

  • Inoue, H., Noguchi, T. and Tanaka, T. (1986) Complete amino acid sequence of rat L-type pyruvate kinase deduced from the cDNA sequence. Eur. J. Biochem., 154, 465–469.

    Article  Google Scholar 

  • Kaplan, N. O. (1975) Mechanism of action and biological functions of various dehydrogenase isozymes, in Isozymes (ed. C. L. Markert), vol. 2. Academic Press, New York, pp. 29–43.

    Google Scholar 

  • Kayne, F. J. (1973) Pyruvate kinase, in The Enzymes (ed. P. D. Boyer), 3rd ed., vol. 8. Academic Press, New York, pp. 353–382.

    Google Scholar 

  • Kemp, R. G. (1975) Phosphofructokinase from rabbit liver, in Methods in enzymology (eds S. P. Colowick and N. O. Kaplan), vol. 42. Academic Press, New York, pp. 67–77.

    Google Scholar 

  • Kemp, R. G., Foe, L. G., Latshaw, S. P., Poormen, R. A. and Heinrikson, R. L. (1981) Studies on the phosphorylation of muscle phosphofructokinase. J. Biol. Chem., 256, 7282–7286.

    Google Scholar 

  • Kitamura, M. and Nishina, T. (1975) Hereditary deficiency of subunit B of lactate dehydrogenase, in Isozymes (ed. C. L. Markert), vol. 2. Academic Press, New York, pp. 97–111.

    Google Scholar 

  • Kobayashi, H., Ozawa, K. and Yamada, S. (1986) Physical and catalytic properties of pyruvate kinase from pig dental pulp. Arch. Oral,-Biol., 31, 559–563.

    Article  Google Scholar 

  • Latner, A. L., Soddiqui, S. A. and Skillen, A. W. (1966) Pyruvate inhibition of lactate dehydrogenase activity in human tissue extracts. Science, 154, 527–529.

    Google Scholar 

  • Latshaw, S. P., Bazaes, S., Randolph, A., Poormen, R. A., Heinrikson, R. L. and Kemp, R. G. (1987) Identification of highly reactive cysteinyl and methyonyl residues of rabbit muscle phosphofructokinase. J. Biol. Chem.,262, 10672–10677.

    Google Scholar 

  • Layzer, R. B., Rowland, L. P. and Ranney, H. M. (1967) Muscle phosphofructokinase deficiency. Arch. Neurol. (Chicago), 17, 512–523.

    Google Scholar 

  • Lee, C. -P., Kao, M. -C., French, B. A., Putney, S. D. and Chang, S. H. (1987) The rabbit muscle phosphofructokinase gene. J. Biol. Chem.,262, 4195–4199.

    Google Scholar 

  • Linde, L. A. and Ljunggren, A. (1970a) Lactate dehydrogenase isoenzymes of the rat incisor pulp. Arch. Oral Biol., 15, 65–69.

    Article  Google Scholar 

  • Linde, A. and Ljunggren, A. (1970b) Lactate dehydrogenase isozyme patterns of human dental pulp. J. Dent. Res., 49, 1469–1472.

    Article  Google Scholar 

  • Ljungström, O. and Ekman, P. (1977) Glucagon-induced phosphorylation of pyruvate kinase (type L) in rat liver slices. Biochem. Biophys. Res. Commun., 78, 1147–1155.

    Article  Google Scholar 

  • Marie, J., Simon, M. -P. Dreyfus, J. -C. and Kahn, A. (1981) One gene, but two messenger RNAs encode liver L and red cell L’ pyruvate kinase subunits. Nature, 292, 70–72.

    Article  Google Scholar 

  • Marie, J., Simon, M. -P. and Kahn, A. (1982) Cotranslation of L and L’ pyruvate kinase messenger RNAs from human fetal liver. Biochim. Biophys. Acta, 696, 340–344.

    Google Scholar 

  • Mejâre, I., Hasselgren, G. and Hammarström, L. E. (1976) Effect of formation-containing drugs on human dental pulp evaluated by enzyme histochemical technique. Scand. J. Dent. Res.,84, 29–36.

    Google Scholar 

  • Milian, J. L., Driscoll, C. E., Levan, K. M. and Goldberg, E. (1987) Epitopes of human testis-specific lactate dehydrogenase deduced from a cDNA sequence. Proc. Nati Acad. Sci. USA, 84, 5311–5315.

    Article  Google Scholar 

  • Nakamura, T., Fujii, M., and Kumegawa, M. (1974) Isozyme of pyruvate kinase in the pulp from the rat incisor. Arch. Oral Biol.,19, 645–650.

    Article  Google Scholar 

  • Noguchi, T., Inoue, H. and Tanaka, T. (1986) The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J. Biol. Chem., 261, 13807–13812.

    Google Scholar 

  • Ozawa, K. (1985) Purification and kinetic properties of phosphofructokinase from dental pulps of rat incisors. Arch. Oral Biol.,30, 577–582.

    Article  Google Scholar 

  • Ozawa, K., Hirayama, K. and Yamada, S. (1985) Purification of pyruvate kinase from pig dental pulp. Jpn. J. Oral Biol., 27, 345–348.

    Article  Google Scholar 

  • Pan, Y. -C., Huang, S., Marciniszyn, J. P., Jr, Lee, C.-Y. and Li, S. S. -L. (1980) The preliminary amino acid sequence of mouse testicular lactate dehydrogenase. Hoppe Seyler’s Z. Physiol. Chem.,361, 795–799.

    Google Scholar 

  • Pejrone, C. A. (1965) Anaerobic glycolysis in dental pulp. J. Dent. Res.,44, 521–525.

    Article  Google Scholar 

  • Pesce, A., Fondy, T. P., Stolzenbach, F. E., Castillo, D. and Kaplan, N. O. (1967) The comparative enzymology of lactic dehydrogenase. III. Properties of the H4 and M4 enzymes from a number of vertebrates. J. Biol. Chem.,242, 2151–2167.

    Google Scholar 

  • Poormen, R. A., Randolph, A., Kemp, R. G. and Heinrikson, R. L. (1984) Evolution of phosphofructokinase gene duplication and creation of new effector sites. Nature, 309, 467–469.

    Article  Google Scholar 

  • Riou, J. P., Claus, T. H. and Pilkis, S. J. (1978) Stimulation by glucagon of in vivo phosphorylation of rat hepatic pyruvate kinase. J. Biol. Chem.,253, 656–659.

    Google Scholar 

  • Robelts, R. W. and Strachen, D. S. (1967) Quantitation of lactate dehydrogenase of developing molar teeth of the mouse. J. Dent. Res., 48, 522–526.

    Google Scholar 

  • Sato, N., Goto, H. and Hirayama, K. (1985) Lactate dehydrogenase isozymes of pig dental pulp. Jpn. J. Pedod., 23 136–139.

    Google Scholar 

  • Sener, A., Malaisse-Lagae, F. and Malaisse, W. J. (1982) Glucose-induced accumulation of glucose-1,6-bisphosphate in pancreatic islets: Its possible role in the regulation of glycolysis. Biochem. Biophys. Res. Commun.,104 1033–1040.

    Article  Google Scholar 

  • Siquara-Da-Rocha, M. C. B. and Nicolau, J. (1980) Metabolic activity of deciduous porcine dental pulp in different phases of root development. J. Dent. Res., 59 762–765.

    Article  Google Scholar 

  • Soderling, T. R., Schworer, C. M., El-Maghrabi, M. R. and Pilkis, S. J. (1986) Phosphorylation of liver pyruvate kinase by Ca++/calmodulin-dependent protein kinase: Characterization of two phosphorylation sites. Biochem. Biophys. Res. Commun., 139 1017–1023.

    Article  Google Scholar 

  • Stambaugh, R. and Post, D. (1966) Substrate and product inhibition of rabbit muscle lactate dehydrogenase heart (H4) and muscle (M4) isozyme. J. Biol. Chem.,241 1462–1467.

    Google Scholar 

  • Szakal, A. K. and Han, S. S. (1967) Histochemical demonstrations of actinomycin-induced changes of certain oxidative and hydrolytic enzymes of rat incisor pulps. Arch. Oral Biol., 12 265–274.

    Article  Google Scholar 

  • Tani, K., Fujii, H., Tsutsumi, H. et al. (1987) Human liver type pyruvate kinase: cDNA cloning and chromosomal assignment. Biochem. Biophys. Res. Commun., 143 431–438.

    Article  Google Scholar 

  • Tarui, S., Okuno, G., Ikura, Y., Tanaka, T., Suda, M. and Nishikawa, M. (1965) Phosphofructokinase deficiency in skeletal muscle. A new type of glycogenesis. Biochem. Biophys. Res. Commun., 19 517–523.

    Article  Google Scholar 

  • Titanji, V. P. K. (1977) Purification and properties of a phosphoprotein phosphatase from rat liver. Biochim. Biophys. Acta, 481 140–151.

    Google Scholar 

  • Tsai, M. Y. and Kemp, R. G. (1973) Isozymes of rabbit phosphofructokinase. Electrophoretic and immunochemical studies. J. Biol. Chem.,248 785–792.

    Google Scholar 

  • Tsai, M. Y., Gonazalez, F. and Kemp, R. G. (1975) Physiological significance of phosphofructokinase isozyme, in Isozymes (ed. C. L. Markert), vol. 2. Academic Press, New York, pp. 819–835.

    Google Scholar 

  • Tsuruta, M., Eto, K. and Chiba, M. (1974) Effect of daily or 4 hourly administrations of lathyrogens on the eruption rates of impeded and unimpeded mandibular incisors of rats. Arch. Oral Biol., 19 1221–1226.

    Article  Google Scholar 

  • Uyeda, K., Furuya, E. and Ludy, L. J. (1981) The effect of natural and synthetic D-fructose 2,6-bisphosphate on the regulatory kinetic properties of liver and muscle phosphofructokinase. J. Biol. Chem.,256 8394–8399.

    Google Scholar 

  • Van Schaftingen, E., Jett, M. -F., Hue, L. and Hers, H. G. (1981) Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proc. Natl Acad. Sci. USA, 78 3483–3486.

    Article  Google Scholar 

  • Vora, S. and Francke, U. (1981) Assignment of the human gene for liver-type 6-phosphofructokinase isozyme (PFKL) to chromosome 21 by using somatic cell hybrids and monoclonal anti L antibody. Proc. Natl Acad. Sci. USA, 78 3738–3742.

    Article  Google Scholar 

  • Vora, S., Durham, S., de Martinville, B., Geoge, D. L. and Francke, U. (1982) Assignment of the human gene for muscle type phosphofructokinase (PFKM) to chromosome 1 (region cen leads to q 32) using somatic cell hybrids and monoclonal anti-M antibody. Somatic Cell Genet., 8 95–104.

    Article  Google Scholar 

  • Vora, S., Mirands, A. F., Hernardez, E. and Francke, U. (1983) Regional assignment of the human gene for platelet-type phosphofructokinase (PFKP) to chromosome 10P: Novel use of polyspecific rodent antisera to localize human enzyme gene. Hum. Genet., 63, 374–379.

    Article  Google Scholar 

  • Weil, D., Cottreau, D., Van Cong, N. et al. (1980) Assignment of the gene for F-type phosphofructokinase to human chromosome 10 by somatic cell hybridization and specific immunoprecipitation. Ann. Hum. Genet., 44, 11–16.

    Article  Google Scholar 

  • Wistow, G. J., Mulders, J. W. M. and de Jong, W. W. (1987) The enzyme lactate dehydrogenase as a structural protein in avian and crocodilian lenses. Nature, 326, 622–624.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Nakanishi, N., Ozawa, K., Yamada, S. (1990). Enzymes of the glycolytic pathway — phosphofructokinase, pyruvate kinase and lactate dehydrogenase. In: Dynamic Aspects of Dental Pulp. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0421-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0421-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6675-4

  • Online ISBN: 978-94-009-0421-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics