Skip to main content

The physiology of the teleostean optic tectum

  • Chapter
The Visual System of Fish

The kind of functional questions that one wishes to ask about the tectum are: (1) How is information from the visual afferents refined within the tectum, if indeed it is? (2) How is it combined with other types of information? (3) What are the specific functions of the conspicuous morphological cell types of the tectum? (4) What use is made of this information behaviourally, that is to say, in terms of motor function?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akert, K. (1949) Der visuelle Greifereflex. Helv. Physiol. Pharm. Acta. 7, 112–34.

    Google Scholar 

  • Ali-Akell, A.S., Guthrie, D.M. and Banks, J.R. (1986) Motor responses to localised electrical stimulation of the tectum in the freshwater perch (Perca ftuviatilis). J. Neurosci., 19, 1381–91.

    Google Scholar 

  • Avery, J.A., Bowmaker, J.K., Djamgoz, M.B.A. and Downing, J.E.G. (1983) Ultraviolet sensitive receptors in a freshwater fish. J. PhysiolLond., 334, 23–4 P.

    Google Scholar 

  • Barlow, H.B., Hill, R.M. and Levick, W.R. (1964) Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol., Lond., 173, 377–407.

    Google Scholar 

  • Barthélémy, L., Peyraud, C., Belaud, A. and Mabin, D. (1975) Étude électro- encephalographique de l’anguille (Anguilla anguïlla L.). J. Physiol., Paris, 70, 173–85.

    Google Scholar 

  • Beauchamp, R.D. and Daw, N.W. (1972) Rod and cone input to single goldfish optic nerve fibres. Vision Res., 12, 1201–12.

    Google Scholar 

  • Beauchamp, R.D. and Lovasik, J.V. (1973) Blue mechanism response of single goldfish optic fibres. J. Neurophysiol., 36, 925–39.

    Google Scholar 

  • Boulet, P.C. (1958) Contribution à l’étude expérimentale de la perception visuelle du mouvement chez la perche et la seiche. Mém. Mus. Natn. Hist. Nat., Paris, Sér. A. Zool., 17, 1–131.

    Google Scholar 

  • Burkamp, H. (1923) Versuche über Farbenwiedererkennen der Fische. Z. Sinnes- physiol., 55, 133–70.

    Google Scholar 

  • Buser, P. (1955a) Analyse des réponses electriques du lobe optique à la Stimulation de la voie visuelle chez quelques vertébrés inférieurs, thesis, Masson, Paris.

    Google Scholar 

  • Buser, P. (1955b) Description et analyses topographiques des réponses à la stimulation du nerf optique. J. Physiol., Paris, 47, 737–68.

    Google Scholar 

  • Cajal, S.R. (1893) La rétine des vertébrés. Cellule, 9, 17–257.

    Google Scholar 

  • Cameron, J. (1974) Chromatic discrimination in the perch, PhD thesis, Sussex University.

    Google Scholar 

  • Contestabile, A. (1976a) Laminar acetylcholinesterase localisation in the optic tectum of three seawater teleosts. Experientia, 32, 625.

    Google Scholar 

  • Contestabile, A. (1976b) Comparative survey on enzyme localisation, ultrastructural arrangement and functional organisation in the optic tectum. Experientia, 32, 1223–9.

    Google Scholar 

  • Contestabile, A. (1978) Acetylcholinesterase concentration in the optic tectum and the cerebellum of three freshwater fish and three marine teleosts. Brain Res. (Amsterdam), 157, 182–5.

    Google Scholar 

  • Cronly-Dillon, J.R. (1964) Units sensitive to movement in goldfish optic tectum. Nature, Lond., 203, 214–15.

    Google Scholar 

  • Daw, N.W. (1968) Colour-coded ganglion cells in the goldfish retina; extension of their receptive fields by means of new stimuli. J. Physiol., Lond., 197, 567–92.

    Google Scholar 

  • Daw, N.W. (1975) Neurophysiology of colour vision. Physiol. Rev., 53, 571–611.

    Google Scholar 

  • Drujan, B.D., DiazBorges, J.M. and Brzin, M. (1979) Histochemical and cytochemical localisation of Ache in retina and optic tectum of teleost fish. Can. J. Biochem., 57, 43.

    Google Scholar 

  • Dunne-Meynell, A. and Sharma, S.C. (1986) The visual system of the channel catfish (Ictalurus punctatus) I. J. Comp. Neurol., 247, 32–55.

    Google Scholar 

  • Easter, S. (1972) Pursuit eye movements in the goldfish. Vision Res. (Amsterdam), 12, 673–88.

    Google Scholar 

  • Ebbesson, S.O.E. and Meyer, D.L. (1981) Efferents to the retina have multiple sources in teleost fish. Science, N.Y., 214, 924–8.

    Google Scholar 

  • Ekström, P. (1987) Distribution of cholineacetylase immunoreactive neurons in the brain of a cyprinid teleost (Phoxinus phoxinus). J. Comp. Neurol., 256, 494–515.

    Google Scholar 

  • Ewert, J.P. (1967) Aktivierung der Veraltensfolge beim Beutefang der Erdkrote. Z. Vergl. Physiol., 61, 41–70.

    Google Scholar 

  • Famiglietti, E.V., Kaneko, A. and Tachibana, M. (1977) Neuronal architecture of ‘on’ and ‘off’ pathways to ganglion cells in carp retina. Science, N.Y., 198, 1267–9.

    Google Scholar 

  • Francis, A. and Schecter, N. (1979) Activity of choline acetyl transferase and acetylcholine esterase in the goldfish optic tectum after disconnection. Neurochem. Res., 4, 547–52.

    Google Scholar 

  • Francis, A. and Schecter, N. (1980) Regional and subcellular distribution of cholinergic enzyme and receptor activity in the goldfish brain. Neuroscience, 5, 293–304.

    Google Scholar 

  • Freeman, J.A. (1979) Intracellular responses and receptor localisation of neurones in slices of goldfish tectum. Invest. Ophthalmol. Vis. Sci. (Supp. 5), 18, 228–37.

    Google Scholar 

  • Freeman, J.A. (1980) Localization and density of ACh receptors at goldfish ventro- tectal synapses computed from intracellular recordings in tissue slices. 27th Int. Cong. Physiol Sei., 14, 1450–52.

    Google Scholar 

  • Freeman, J.A., Schmidt, J.T. and Oswald, R.E. (1980) Effect of BTX on retinotectal transmission in the goldfish and the toad. Neuroscience, 5, 929–42.

    Google Scholar 

  • Friedlander, M J. (1983) The visual prosencephalon of teleosts, in Fish Neurobiology (eds R.E. Davis and R.G. Northcutt ), University of Michigan Press, Ann Arbor, pp. 91–116.

    Google Scholar 

  • Galand, G. and Liege, B. (1975) Réponses visuelles unitaires chez la truite, in Vision in Fishes, New Approaches in Research (ed. M.A. Ali ), Plenum, New York, pp. 127–36.

    Google Scholar 

  • Gasser, H.G. and Erlanger, J. (1927a) The role played by the sizes of the constituent fibres of a nerve trunk in determining the form of the action potential wave. Am. J. Physiol., 80, 522–47.

    Google Scholar 

  • Gasser, H.G. and Erlanger, J. (1927b) The role played by the constituent fibres of a nerve trunk in determining the form of the action potential wave. Am. J. Physiol., 80, 522–47.

    Google Scholar 

  • Gulley, R. I., Cochran, M. and Ebbesson, S.O.E. (1975) The visual connections of the adult flatfish, Achims lineatus. J. Comp. Neurol., 162, 309–20.

    Google Scholar 

  • Gunnarson, T. (1985) Morphology and physiology of horizontal cells in the perch, PhD thesis, Durham University.

    Google Scholar 

  • Guthrie, D.M. (1981) The properties of the visual pathways of a common freshwater fish (Perca fluviatilis) in relation to its visual behaviour. Symp. Soc. Exp. Biol., 9, 79–111.

    Google Scholar 

  • Guthrie, D.M. (1983a) Central visual processing in fish, in Vertebrate Neuroethology (eds J.P. Ewert and R. Capranica ), Plenum, London, pp. 381–412.

    Google Scholar 

  • Guthrie, D.M. (1983b) Integration and control by the central nervous system, in Control Processes in Fish Physiology (eds J.C. Rankin, T.J. Pitcher and R. Duggan ), Croom Helm, London, pp. 130–54.

    Google Scholar 

  • Guthrie, D.M. (1986) The role of vision, in The Behaviour of Teleost Fishes (ed. T.J. Pitcher ), Croom Helm, London, pp. 75–113.

    Google Scholar 

  • Guthrie, D.M. and Banks, J.R. (1974) Input characteristics of the optic tectum of teleost fish. Comp. Biochem. Physiol., 41, 83–92.

    Google Scholar 

  • Guthrie, D.M. and Banks, J.R. (1976) Patterned responses from widefield T2 neurones in the fish tectum. Brain Res., 104, 321–4.

    Google Scholar 

  • Guthrie, D.M. and Banks, J.R. (1978) The receptive field structure of visual cells from the optic tectum of the freshwater perch (Perca fluviatilis). Brain Res. (Amsterdam), 141, 211–25.

    Google Scholar 

  • Guthrie, D.M. and Sharma, S.C. (1988) Photic responses from morphologically identified neurones in the tectum of the goldfish. Soc. Neurosci. Abstr., 14, 1231.

    Google Scholar 

  • Guthrie, D.M., Banks, J.R. and Rudolfer, S.M. (1976) Statistical properties of spike trains from intrinsic cells in the optic tectum of teleost fish. Proc. IXth Int. Biom. Conf., Boston, Mass., 2, 71–90.

    Google Scholar 

  • Harosi, F.I. and Hashimoto, Y. (1983) U.V. visual pigment in a vertebrate: a tetrachromatic system in a dace (Tribolodon). Science, N.Y., 222, 1021–3.

    Google Scholar 

  • Henley, J., Lindstrom, J. and Oswald, R.E. (1986) Acetylcholine receptor synthesis in retina and transport to optic tectum in goldfish. Science, N.Y., 232, 1627–9.

    Google Scholar 

  • Hida, E. and Naka, K.-I. (1982) Spatio-temporal visual receptor fields as revealed by spatio-temporal random noise. Z. Naturf., 37c, 1048–9.

    Google Scholar 

  • Hornby, P.J., Piekut, D.T. and Demski, L.S. (1987) Localisation of immunoreactive tyrosine hydroxylase in the goldfish brain. J. Comp. Neurol., 261, 1–14.

    Google Scholar 

  • Huang, B.Q. (1986) Visually-evoked startle responses in teleosts, PhD thesis, Aberdeen University.

    Google Scholar 

  • Huang, B.Q. and Djamgoz, M.B.A. (1988) An intracellular horseradish peroxidase study in the perch (Perca fluviatilis). Bull. Inst. Zool. Acad. Sin., 27, 183–93.

    Google Scholar 

  • Ingle, D. (1967) Two visual mechanisms underlying the behaviour of fish. Psychol. Forsch., 31, 44–51.

    Google Scholar 

  • Ito, H. and Murakami, T. (1984) Retinal ganglion cells in two teleost species Sebastiscus marmoratus and Navodon modestus. J. Comp. Neurol., 229, 80–96.

    Google Scholar 

  • Jacobson, M. (1964) Spectral sensitivity of single units in the optic tectum of the goldfish. Q. J. Exp. Physiol., 49, 384–94.

    Google Scholar 

  • Jacobson, M. and Gaze, R.M. (1964) Types of visual response from single units in the optic tectum and the optic nerve of the goldfish. Q. J. Exp. Physiol., 49, 199–209.

    Google Scholar 

  • Johnstone, J.R. and Mark, R.F. (1971) The efference copy neurone. J. Exp. Biol., 54, 403–14.

    Google Scholar 

  • Kageyama, G.H. and Meyer, R.L. (1987) Immunohistochemical localisation of GABA, CHAT, glutamate and aspartate in the visual system of goldfish and mice. Soc. Neurosci. Abstr., 13 (2), 860.

    Google Scholar 

  • Kawasaki, M. and Aoki, K. (1983) Visual responses recorded from the optic tectum of the Japanese dace (Tribolodon). J. Comp. Physiol., 152 (2), 147–54.

    Google Scholar 

  • Kien, J. and Menzel, R. (1977a) Chromatic properties of interneurons in the optic lobes of the bee. I: broad band neurons. J. Comp. Physiol., 113, 17–34.

    Google Scholar 

  • Kien, J. and Menzel, R. (1977b) Chromatic properties of interneurons in the optic lobes of the bee. II: broad narrow band and opponent neurons. J. Comp. Physiol., 113, 35–53.

    Google Scholar 

  • Kock, J-H. and Reuter, T. (1978a) Retinal ganglion cells in the crucian carp (Carassius carassius). i. Size and number of somata in eyes of different size. J. Comp. Neurol., 179, 535–48.

    Google Scholar 

  • Kock, J-H. and Reuter, T. (1978b) Retinal ganglion cells in the crucian carp (Carassius carassius). n. Overlap, shape and tangential orientation of dendritic trees. J. Comp. Neurol., 179, 549–68.

    Google Scholar 

  • Konishi, J. (1960) Electric response of visual center in fish especially to coloured light flash. Jap. J. Physiol., 10, 13–27.

    Google Scholar 

  • Laming, P. (1981) Brain Mechanisms in Lower Vertebrates, Cambridge University Press, Cambridge.

    Google Scholar 

  • Landau, W.M., Clare, M.H. and Bishop, G.H. (1968) Reconstruction of myelinated nerve tract action potentials: an arithmetic method. Exp. Neurol., 22, 480–90.

    Google Scholar 

  • Landreth, G.E., Neale, E.A., Neale, J.H., Duff, R.S., Bradford, M.R., Northcutt, R.G. and Agranoff, B.W. (1975) Evaluation of [3H]proline for autoradiographic tracing of axonal projections in the teleost visual system. Brain Res. (Amsterdam), 91, 25–35.

    Google Scholar 

  • Langdon, R.B. and Freeman, J.A. (1986) Antagonists of glutaminergic neurotrans-mission block retinotectal transmission in goldfish. Brain Res. (Amsterdam), 398, 169–74.

    Google Scholar 

  • Langdon, R.B. and Freeman, J.A. (1987) Pharmacology of retinotectal transmission in the goldfish: effects of nicotinic ligands strychnine and kynurenic acid. J. Neurosci., 7, 760–73.

    Google Scholar 

  • Lasater, E.M. (1982) Spatial receptive fields of catfish retinal ganglion cells. J. Neurophysiol., 48, 823–5.

    Google Scholar 

  • Levine, M.W. and Shefner, J.M. (1979) X-like and not X-like cells in goldfish retina. Vision Res., 19, 95–7.

    Google Scholar 

  • Luckenbill-Edds, L. and Sharma, S.C. (1977) Retinal projection of the adult winter flounder (Pseudopleuronectes americanus). J. Comp. Neurol., 173, 307–18.

    Google Scholar 

  • Mark, R.F. and Davidson, T.M. (1966) Unit responses from commissural fibers in the optic lobes of fish. Science, N.Y., 152, 797–9.

    Google Scholar 

  • Marks, W.B. (1965) Visual pigments of single goldfish cones. J. PhysiolLond., 178, 14–32.

    Google Scholar 

  • Matsumoto, N. and Bando, T. (1981) Long-lasting evoked potential and receptive firing recorded from the carp optic tectum in Cl-deficient medium in vitro. Brain Res. (Amsterdam), 225, 437–41.

    Google Scholar 

  • Matsumoto, N., Kiyama, H. and Bando, H. (1983) An intracellular study of the optic tectum of the carp in vitro. Neurosci. Lett., 38, 17–22.

    Google Scholar 

  • Meek, H. (1981) A Golgi-electronmicroscope study of the goldfish optic tectum. J. Comp. Neurol., 199, 149–73.

    Google Scholar 

  • Meyer, D.L., Schott, D. and Schaeffer, K.-P. (1970) Reizversuche im Tectum opticum freischwimmender Kabeljaue bzw. Dorsche (Gadus morhua). Pflügers Arch. ges. Physiol., 314, 240–52.

    Google Scholar 

  • Migani, P., Contestabile, A., Cristini, G. and Labanti, V. (1980) Evidence of intrinsic cholinergic circuits in the optic tectum of teleosts. Brain Res. ( Amsterdam ), 194, 125.

    Google Scholar 

  • Mizumo, M., Imai, S. and Tsukada, M. (1985) A microcomputer system for spatiotemporal visual receptive field analysis. Inst. Electrical Electronics Eng. (IEEE) Trans. Biomed. Eng., 32, 56–60.

    Google Scholar 

  • Naka, K.I. and Carraway, N.R.G. (1975) Morphological and functional identification of catfish retinal neurones. J. Neurophysiol., 38, 53–71.

    Google Scholar 

  • Naka, K.I. and Nye, P.W. (1970) Receptive field organisation of the catfish retina. J. Neurophysiol., 44, 625–42.

    Google Scholar 

  • Neale, J.H., Neale, E.A. and Agranoff, B.W. (1972) Radioautography of the optic tectum of the goldfish after intraocular injection of 3H proline. Science, N.Y., 176, 407–10.

    Google Scholar 

  • Nicholson, C. and Freeman, J.A. (1975) Theory of current source-density analysis. J. Neurophysiol., 38, 356–74.

    Google Scholar 

  • Niida, A. (1973) Visual responses from ipsilateral optic tectum of Crucian carp. J. Fac. Sci. Hokkaido Univ. Ser. VI, Zool., 19, 50–57.

    Google Scholar 

  • Niida, A. and Sato, Y. (1972) An analysis of visual responses in the optic tract and tectum of the Crucian carp. J. Fac. Sci. Hokkaido Univ., Ser. VI, Zool., 18, 371–86.

    Google Scholar 

  • Niida, A., Oka, H. and Iwata, K.S. (1980) Visual responses of morphologically identified tectal neurones in the Crucian carp. Brain Res. (Amsterdam), 201, 361–6.

    Google Scholar 

  • Niida, A., Ohono, T. and Iwata, K. (1989) Efferent tectal cells of Crucian carp; physiology and morphology. Brain Res. Bull., 22, 389–98.

    Google Scholar 

  • Northmore, D.P.M. and Masino, T. (1984) Recovery of vision in fish after optic nerve crush: a behavioural and electrophysiological study. Exp. Neurol., 84, 109–25.

    Google Scholar 

  • Northmore, D.P.M., Skeen, J. and Pindzola, R. (1981) Visuomotor perimetry. Vision Res., 21, 78–85.

    Google Scholar 

  • Northmore, D.P.M., Williams, B. and Vanegas, H. (1983) The teleostean torus longitudinalis: responses to eye movements, visuotopic mapping and functional relationships with the optic tectum. J. Comp. Physiol. A., 150, 39–50.

    Google Scholar 

  • O’Benar, J.D. (1976) Electrophysiology of neural units in goldfish optic tectum. Brain Res. Bull., 1, 529–41.

    Google Scholar 

  • Ormond, R.W. (1974) Visually responsive cells in the goldfish optic tectum, Part I, PhD thesis, Cambridge University.

    Google Scholar 

  • Oswald, R.E. and Freeman, J.A. (1980) Optic nerve transmitters in lower vertebrates. Life Sci. (Oxford), 27, 527–33.

    Google Scholar 

  • Oswald, R.E. and Freeman, J.A. (1981) Alpha-bungarotoxin binding and central nervous system nicotinic acetylcholine receptors. Neuroscience, 6, 1–14.

    Google Scholar 

  • Parent, A., Dube, L., Braford, M.R. and Northcutt, R.G. (1978) The organisation of monoamine-containing neurons in the brain of the sunfish (Lepomis) as revealed by fluorescence microscopy. J. Comp. Neurol., 182, 495–516.

    Google Scholar 

  • Prosser, C.L. and Nagai, T. (1968) Effects of low temperature on conditioning in goldfish, in The Central Nervous System and Fish Behaviour (ed. D. Ingle ), University of Chicago Press, Chicago, pp. 171–81.

    Google Scholar 

  • Ramstad, T. and Hughes, G.W. (1973) Localised unit responses in the optic tectum of the carp. Vision Res., 13, 1527–36.

    Google Scholar 

  • Raynauld, J.P. (1972) Goldfish retina: sign of the rod input in opponent color ganglion cells. Science, N.Y., 177, 84–5.

    Google Scholar 

  • Regan, D., Schellart, N.A.M., Spekreijse, H. and Berg, T.J.T. van den (1975) Photometry in goldfish by electrophysiological recording. Vision Res., 15, 799–808.

    Google Scholar 

  • Repérant, J., Lemire, M., Miceli, D. and Peyrichoux, J. (1976) A radioautographic study of the visual system in freshwater teleosts following intra-ocular injection of tritiated fucose and proline. Brain Res. (Amsterdam), 118, 123–31.

    Google Scholar 

  • Riemslag, F.C.C. and Schellart, N.A.M. (1978) Evoked potentials and spike responses to moving stimuli in the optic tectum of goldfish. J. Comp. Physiol., 128, 13–20.

    Google Scholar 

  • Ross, C.D. and Godfrey, D.A. (1986) Effect of enucleation on choline acetyltransferase activity in layers of goldfish optic tectum. Brain Res. (Amsterdam), 373, 49–56.

    Google Scholar 

  • Rowe, E. (1980) Intrinsic cells of the tectum of the rockbass Ambloplites and of the goldfish. Diss. Abstr., 41B, (3), 843.

    Google Scholar 

  • Rushton, W.A.H. (1965) Visual adaptation. The Ferrier Lecture. Proc. R. Soc., B, 162, 20–46.

    Google Scholar 

  • Sajovic, P. and Levin thai, C. (1982) Visual cells of zebrafish optic tectum. Mapping with small spots. Neuroscience, 7, 2407–40.

    Google Scholar 

  • Salvaterra, P.M. and Foders, R.M. (1979) 125I-alpha bungarotoxin and 3H-quinelidinyl benzilate binding in central nervous systems of different species. J. Neurochem., 32, 1509–17.

    Google Scholar 

  • Sandeman, D.C. and Rosenthal, N.P. (1974) Efferent axons in fish optic nerve and their effects on retinal ganglion cells. Brain Res. (Amsterdam), 68, 41–54.

    Google Scholar 

  • Sato, Y. (1974) Light and dark adaptation of tectal neurons in the crucian carp; the effect of stimulus parameters upon both neuronal threshold and response magnitude. J. Fac. Sci. Hokkaido Univ., Ser. VI, Zool., 19, 315–37.

    Google Scholar 

  • Schade, J.P. and Weiler, I.J. (1959) Electroencephalographic patterns of the goldfish (Carassius auratus L.). J. Exp. Biol., 36, 435–52.

    Google Scholar 

  • Schellart, N.A.M. and Spekreijse, H. (1976) Shapes of receptive field centres in the optic tectum of the goldfish. Vision Res., 19, 459–61.

    Google Scholar 

  • Schellart, N.A.M., Riemslag, F.C.C. and Spekreijse, H. (1979) Centre surround organization and interactions in receptive fields of goldfish tectal units. Vision Res., 19, 459–67.

    Google Scholar 

  • Schilling, T.F. and Northcutt, R.G. (1987) Amniotes and anamniotes may possess homoplastic retinopetal projections from the isthmic tegmentum. Soc. Neurosci. Abstr., 13 (1), 130.

    Google Scholar 

  • Schmidt, J.T. (1979) The laminar organization of optic nerve fibres in the tectum of the goldfish. Proc. Roy. Soc. Lond. (B), 205, 287–306.

    Google Scholar 

  • Schmidt, J.T. and Freeman, J.A. (1980) Electrophysiological evidence that retinotectal synaptic transmission in the goldfish is nicotinic cholinergic. Brain Res. (Amsterdam), 187, 129–36.

    Google Scholar 

  • Scholes, J.H. (1979) Nerve fibre topography in the retinal projection to the tectum. Nature, Lond., 278, 620–24.

    Google Scholar 

  • Schwassmann, H.O. (1968) Visual projections upon the tectum in foveate marine teleosts. Vision Res., 8, 1337–48.

    Google Scholar 

  • Schwassmann, H.O. and Kruger, L. (1965a) Organisation of the visual projection upon the optic tectum of some freshwater fish. J. Comp. Neurol., 124, 113–26.

    Google Scholar 

  • Schwassmann, H.O. and Kruger, L. (1965b) Experimental analysis of the visual system of the four-eyed fish, Anableps microlepis. Vision Res., 5, 269–81.

    Google Scholar 

  • Shapley, R.M. and Gordon, J. (1978) The eel retina. Ganglion cell classes and spatial mechanisms. J. Gen. Physiol., 71, 139–55.

    Google Scholar 

  • Sharma, S.C., Berthoud, M. and Breckwoldt, R. (1987) Distribution of substance P- like immunoreactivity in the goldfish brain. J. Comp. Neurol., 279, 104–16.

    Google Scholar 

  • Spekreijse, H., Wagner, H.G. and Wohlbarsht, M.L. (1972) Spectral and spatial coding of ganglion cell responses in goldfish retina. J. NeurophysioL, 35, 73–86.

    Google Scholar 

  • Springer, A. and Gaffney, J.S. (1981) Retinal projections in the goldfish: a study using cobaltous lysine. J. Comp. Neurol., 203, 401–24.

    Google Scholar 

  • Stone, J. (1983) Parallel Processing in the Visual System, Plenum, London.

    Google Scholar 

  • Strausfeld, N. (1976) Atlas of the Insect Brain, Springer, Berlin.

    Google Scholar 

  • Sutterlin, A.M. and Prosser, C.L. (1970) Electrical properties of goldfish optic tectum. J. Neurophsyiol., 33, 36–45.

    Google Scholar 

  • Szekely, G. (1973) Anatomy and synaptology of the optic tectum, Visual centres of the brain, in Handbook of Sensory Physiology VII/3B (ed. R. Jung ), Springer, Berlin, pp. 1–20.

    Google Scholar 

  • Tamura, T. and Hanyu, I. (1979) Pineal sensitivity in fishes, in Environmental Physiology of Fishes (ed. M. Ali ), Plenum, London, pp. 477–96.

    Google Scholar 

  • Tapp, R. (1974) Axon numbers and distribution, myelin thickness and the reconstruction of the compound action potential in the optic nerve of the teleost: Eugenes plumieri. J. Comp. Physiol., 153, 267–74.

    Google Scholar 

  • Tumosa, N., Stell, W.K., Johnstone, C.D. and Epstein, M.I. (1986) Putative cholinergic interneurons in the optic tectum of the goldfish. Brain Res. (Amsterdam), 370, 365–9.

    Google Scholar 

  • Uchimayo, H. and I to, H. (1984) Fiber connections and synaptic organization of the preoptic retinopetal nucleus in the filefish (Balistidae). Brain Res. (Amsterdam), 298, 4–24.

    Google Scholar 

  • Vanegas, H. (ed.) (1974) Comparative Neurology of the Optic Tectum. Plenum Press, New York.

    Google Scholar 

  • Vanegas, H., Amat, J. and Essayag-Millan, E. (1973) Electrophysiological evidence of tectal efferents to the fish eye. Brain Res. (Amsterdam), 54, 309–13.

    Google Scholar 

  • Vanegas, H., Amat, J. and Essay ag-Millan, E. (1974) Postsynaptic phenomena in optic tectum neurons following optic nerve stimulation in fish. Brain Res. (Amsterdam), 77, 25–38.

    Google Scholar 

  • Vanegas, H., Essay ag-Millan, E. and Laufer, M. (1971a) Response of the optic tectum to stimulation of the optic nerve in the teleost Eugenes plumieri. Brain Res. (Amsterdam), 31, 107–18.

    Google Scholar 

  • Vanegas, H., Essay ag-Millan, E. and Laufer, M. (1971b) Laminar profile analysis of the tectal evoked response in the teleost, Eugenes plumieri. Acta cient. venez., 22, 82–5.

    Google Scholar 

  • Vanegas, H., Williams, B. and Freeman, J.A. (1979) Responses to stimulation of marginal fibres in the teleost optic tectum. Exp. Brain Res., 34, 335–42.

    Google Scholar 

  • Villani, L., Ciani, F. and Contestabile, A. (1979) Electron microscope histochemistry of acetylcholine-esterase distribution in the optic tectum of teleosts. J. Hirnforsch., 20, 539–42.

    Google Scholar 

  • Von Holst, E. (1935) Uber den Lichtruckenreflex bei Fischen. Pubbl. Staz. zool. Napoli, 15, 143–58.

    Google Scholar 

  • Wagner, H.G., MacNichol, E.F. and Wohlbarsht, M.L. (1963) Functional basis for ‘on’-center and ‘off’ center receptive fields in the retina. J. Opt. Soc. Am., 53, 66–70.

    Google Scholar 

  • Wartzok, D. and Marks, W.B. (1973) Directionally selective visual units recorded in optic tectum of the goldfish. J. Neurophysiol., 36, 588–604.

    Google Scholar 

  • Wawrzyniak, M. (1962) Chemoarchitektonische Studien am Tectum opticum von Teleostieren unter normalen und experimentelle Bedingungen. Z. Zellforsch. Mikrosk. Anat., 58, 234–41.

    Google Scholar 

  • Wienrich, M. and Zrenner, E. (1983) Colour opponent mechanisms in cat retinal ganglion cells, in Colour Vision (eds J.D. Mollon and L.T. Sharpe ), Academic Press, London pp. 183–94.

    Google Scholar 

  • Willis, B. (1987) (pers. comm.).

    Google Scholar 

  • Witkovsky, P. (1965) The spectral sensitivity of retinal ganglion cells in the carp. Vision Res., 5, 603–14.

    Google Scholar 

  • Witkovsky, P. (1971) Synapses made by myelinated fibres running to teleost and elasmobranch retinas. J. Comp. Neurol., 142, 205–22.

    Google Scholar 

  • Yamada, T., Marshak, D., Barsinger, S., Walsh, J., Morley, J. and Stell, W. (1980) Somatostatin-like immunoreactivity in the retina. Proc. Natn. Acad. Sci. USA, 77, 1691–9.

    Google Scholar 

  • Zenkin, G.M. and Pigarev, I.N. (1969) Detector properties of the ganglion cells of the pike retina. Biophysics, 14, 763–72.

    Google Scholar 

  • Zottoli, S.J., Rhodes, K.J. and Mufson, E.J. (1987a) Comparison of Achase and ChAT staining patterns in the optic tectum of the goldfish. Brain Behav. Evol., 30, 143–59.

    Google Scholar 

  • Zottoli, S.J., Hordes, A.R. and Faber, D.S. (1987b) Localization of the optic tectum input to the ventral dendrite of the goldfish Mauthner cell. Brain Res., 401, 113–21.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Guthrie, S.D.M. (1990). The physiology of the teleostean optic tectum. In: Douglas, R., Djamgoz, M. (eds) The Visual System of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0411-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0411-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6672-3

  • Online ISBN: 978-94-009-0411-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics