Skip to main content

Electrophysiological characteristics of retinal neurones: synaptic interactions and functional outputs

  • Chapter
Book cover The Visual System of Fish

Abstract

Aquatic habitats are extremely diverse, ranging from deep seas, where hardly any light might be available for vision, to shallow waters, where a wide variety of visual cues would normally be found. Even within a restricted aquatic environment, properties of the light stimulus may change markedly in space and time, thereby making a considerable demand on the functioning of the visual system to remain constantly efficient. Retinal neurones of fish (in common with those of other vertebrates) extract visual information from the optical image focused on the retina. It is not certain that all the available information is used, but presumably at least that portion essential to the animals’ behaviour and ecology would be extracted and processed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, A.J. and Afandor, A.J. (1971) Ganglion cell receptive field organization at different levels of light adaptation. Am. J. Optom., 48, 889–94.

    Google Scholar 

  • Ashmore, J.F. and Falk, G. (1980) Responses of rod bipolar cells in the dark adapted retina of the dogfish, Scyliorhinus canicula. J. Physiol., Lond., 300, 115–50.

    Google Scholar 

  • Attwell, D. (1986) Ion channels and signal processing in the outer retina. Q. J. Physiol., 71, 497–536.

    Google Scholar 

  • Baylor, D.A. and Fuortes, M.G.F. (1970) Electrical responses of single cones in the retina of the turtle. J. Physiol., Lond., 207, 77–92.

    Google Scholar 

  • Baylor, D.A., Fuortes, M.G.F. and O’Bryan, P.M. (1971) Receptive fields of cones in the retina of the turtle. J. Physiol., Lond., 214, 265–94.

    Google Scholar 

  • Beauchamp, R.D. and Daw, N.W. (1972) Rod and cone input to single goldfish optic nerve fibers. Vision Res., 12, 1201–12.

    Google Scholar 

  • Beauchamp, R.D. and Rowe, J. (1977) Goldfish spectral sensitivity: a conditioned heart rate measure in restrained or curarized fish. Vision Res., 17, 617–24.

    Google Scholar 

  • Burkhardt, D.A. (1977) Responses and receptive-field organization of cones in perch retina. J. Neurophysiol., 40, 53–62.

    Google Scholar 

  • Burkhardt, D.A. and Hassin, G. (1978) Influences of cones upon chromatic- and luminosity type horizontal cells in pikeperch retinas. J. Physiol., Lond., 281, 125–37.

    Google Scholar 

  • Burkhardt, D.A. and Hassin, G. (1983) Quantitative relations between colour- opponent responses of horizontal cells and action spectra of cones. J. Neurophysiol., 49, 961–75.

    Google Scholar 

  • Burkhardt, D.A., Hassin, G., Levine, J.S. and MacNichol, E.F., jun. (1980) Electrical responses and photopigments of twin cones in the retina of the walleye. F. Physiol., Lond., 309, 215–28.

    Google Scholar 

  • Burkhardt, D.A., Kraft, T.W. and Gottesman, J. (1986) Functional properties of twin and single cones. Neuroscience Res. (Shannon, Ireland), Supp. 4, S45–S58.

    Google Scholar 

  • Byzov, A.L. and Shura-bura, T.M. (1986) Electrical feedback mechanisms in the processing of signals in the outer plexiform layer of the retina. Vision Res., 26, 33–44.

    Google Scholar 

  • Byzov, A.L. and Trifonov, Y.A. (1968) The response to electric stimulation of horizontal cells in the carp retina. Vision Res., 8, 817–22.

    Google Scholar 

  • Byzov, A.L. and Trifonov, Y.A. (1981) Ionic mechanisms underlying the nonlinearity of horizontal cell membrane. Vision Res., 21, 1573–8.

    Google Scholar 

  • Byzov, A.L., Trifonov, Y.A., Chailahian, L.M. and Golubtzov, K.W. (1977) Amplification of graded potential in horizontal cells of the retina. Vision Res., 17, 265–73.

    Google Scholar 

  • Cameron, N.E. (1982) The photopic spectral sensitivity of a dichromatic teleost fish (Perca fluviatilis). Vision Res., 22, 1341–8.

    Google Scholar 

  • Cowan, M.W. (1970) Centrifugal fibres to the avian retina. Br. Med. Bull., 26, 112–18.

    Google Scholar 

  • Cronly-Dillon, J.R. (1964) Units sensitive to direction of movement in goldfish optic tectum. Nature, Lond., 203, 214–15.

    Google Scholar 

  • Davis, G.W. and Naka, K.-I. (1980) Spatial organization of catfish retinal neurons. I. Single- and random-bar stimulation. J. Neurophysiol., 43, 807–31.

    Google Scholar 

  • Davis, R.E., Kyle, A. and Klinger, P.D. (1986) Nervus terminalis innervation of the goldfish retina and behavioural sensitivity. Neurosci. Lett., 91, 126–30.

    Google Scholar 

  • Daw, N.W. (1968) Colour-coded ganglion cells in the goldfish retina. Extension of their receptive fields by means of new stimuli. J. Physiol., Lond., 197, 567–92.

    Google Scholar 

  • Djamgoz, M.B.A. (1984) Electrophysiological characterization of the spectral sensitivities of horizontal cells in cyprinid fish retina. Vision Res., 24, 1677–87.

    Google Scholar 

  • Djamgoz, M.B.A. (1986) Common features of light-evoked amacrine cell responses in vertebrate retina. Neurosci. Lett., 71, 187–91.

    Google Scholar 

  • Djamgoz, M.B.A. (1988) Differential recovery rates of horizontal and amacrine cell responses from intense irradiation in the isolated retina of cyprinid fish. Neurosci. Lett., 88, 263–70.

    Google Scholar 

  • Djamgoz, M.B.A. and Downing, J.E.G. (1988) A horizontal cell selectively contacts blue-sensitive cones in cyprinid fish retina: intracellular staining with horseradish peroxidase. Proc. R. Soc., B, 235, 281–7.

    Google Scholar 

  • Djamgoz, M.B.A., and Laming, P.J. (1987a) Intracellular potassium activities of horizontal cells and extracellular potassium activity in isolated retinae of cyprinid fish. Vision Res., 27, 711–21.

    Google Scholar 

  • Djamgoz, M.B.A. and Laming, P.J. (1987b) Micro-electrode measurements and functional aspects of chloride activity in cyprinid fish retina: extracellular activity and intracellular activities of L- and C-type horizontal cells. Vision Res., 27, 1481–9.

    Google Scholar 

  • Djamgoz, M.B.A. and Ruddock, K.H. (1978) Changes in structure and electrophysiological function of retinal neurones induced by laser irradiation. Neurosci. Lett., 7, 251–6.

    Google Scholar 

  • Djamgoz, M.B.A. and Ruddock, K.H. (1979) Effects of picrotoxin and strychnine on fish retinal S-potentials: evidence for inhibitory control of depolarizing responses. Neurosci. Lett., 12, 329–34.

    Google Scholar 

  • Djamgoz, M.B.A. and Ruddock, K.H. (1980) Evidence for a GABAergic feed-back loop in the outer plexiform layer of the vertebrate retina. Colour Vision Deficiencies, 5, 45–50.

    Google Scholar 

  • Djamgoz, M.B.A. and Ruddock, K.H. (1983) Spectral characteristics of transient amacrine cells in a cyprinid fish (roach) retina in vitro. J. Physiol., Lond., 339, 19 P.

    Google Scholar 

  • Djamgoz, M.B.A. and Stell, W.K. (1984) Tetrodotoxin does not block the axonal transmission of S-potentials in goldfish retina. Neurosci. Lett., 49, 233–8.

    Google Scholar 

  • Djamgoz, M.B.A. and Wagner, H.-J. (1987) Intracellular staining of retinal neurones: applications to studies of functional organization. Progress in Retinal Research, 6, 85–150.

    Google Scholar 

  • Djamgoz, M.B.A., Downing, J.E.G. and Wagner, H.-J. (1985) The cellular origin of an unusual type of S-potential: an intracellular horseradish peroxidase study in cyprinid fish retina. J. Neurocytol., 14, 469–86.

    Google Scholar 

  • Djamgoz, M.B.A., Downing, J.E.G., Kirsch, M., Prince, D.J. and Wagner, H.-J. (1988) Plasticity of cone horizontal cell functioning in cyprinid fish retina: effects of background illumination of moderate intensity. J. Neurocytol., 17, 701–10.

    Google Scholar 

  • Djamgoz, M.B.A., Capp, A.J., Low, J.C. and Downing, J.E.G. (1989) Amacrine cells and control of retinal sensitivity, in Neurobiology of the Inner Retina (eds R. Weiler and N. Osborne), Springer-Verlag, Berlin, pp. 000-000. (In press)

    Google Scholar 

  • Douglas, R.H. (1986) Photopic spectral sensitivity of a teleost fish, the roach (Rutilus rutilus), with special reference to its ultraviolet sensitivity. J. Comp. Physiol., 159, 415–21.

    Google Scholar 

  • Dowling, J.E. (1979) Information processing by local circuits: the vertebrate retina as a model system, in The Neurosciences, Fourth Study Program (eds F.O. Schmitt and F.G. Worden ), MIT Press, Cambridge, Mass., pp. 163–81.

    Google Scholar 

  • Dowling, J.E. (1986) Dopamine: a retinal neuromodulator? Trends Neurosci., 9, 236–40.

    Google Scholar 

  • Dowling, J.E. and Ehinger, B. (1975) Synaptic organization of the amine containing interplexiform cells of the goldfish and cebus monkey retinas. Science, N.Y., 188, 270–73.

    Google Scholar 

  • Dowling, J.E. and Ehinger, B. (1978) The interplexiform cell system. I. Synapses of the dopaminergic neurones of the goldfish retina. Proc. R. Soc., B, 201, 7–26.

    Google Scholar 

  • Dowling, J.E. and Ripps, H. (1971) S-potentials in the skate retina: intracellular recordings during light and dark adaptation. J. Gen. Physiol., 58, 163–89.

    Google Scholar 

  • Dowling, J.E. and Ripps, H. (1977) The proximal negative response and visual adaptation in the skate retina. J. Gen. Physiol., 69, 57–74.

    Google Scholar 

  • Dowling, J.E., Ehinger, B. and Hedden, W.L. (1976) The interplexiform cell: a new type of retinal neurone. Invest. Ophthalmol. Vis. Sci., 15., 916–26.

    Google Scholar 

  • Downing, J.E.G. and Djamgoz, M.B.A. (1989) Quantitative analysis of cone photoreceptor - horizontal cell connectivity patterns in the retina of a cyprinid fish: electron microscopy of functionally-identified and HRP-labelled horizontal cells. J. Comp. Neurol., 000, 000-000. (In press)

    Google Scholar 

  • Downing, J.E.G., Djamgoz, M.B.A. and Bowmaker, J.K. (1986) Photoreceptors of a cyprinid fish, the roach: morphological and spectral characteristics. J. Comp. Physiol., 159, 859–68.

    Google Scholar 

  • Dubin, M. (1970) The inner plexiform layer of the vertebrate retina: a quantitative and comparative electron microscopic analysis. J. Comp. Neurol., 140, 479–506.

    Google Scholar 

  • Ebbesson, S.O.E. and Meyer, D.L. (1981) Efferents to the retina have multiple sources in teleost fish. Science, N.Y., 214, 924–6.

    Google Scholar 

  • Enroth-Cugell, C. and Robson, J.G. (1966) The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol., Lond., 187, 517–52.

    Google Scholar 

  • Enroth-Cugell, C. and Robson, J.G. (1984) Functional characteristics and diversity of cat retinal ganglion cells. Invest. Ophthalmol. Vis. Sci., 25, 250–67.

    Google Scholar 

  • Fesenko, E.E., Kolesnikov, S.S. and Lyubarsky, A.L. (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature, Lond., 313, 310–13.

    Google Scholar 

  • Frumkes, T.E., Miller, R.F., Slaughter, M. and Dacheux, R.F. (1981) Physiological and pharmacological basis of GABA and glycine action on neurones of mudpuppy retina. III. Amacrine-mediated inhibitory influences on ganglion cell receptive-field organization: a model. J. Neurophysiol., 45, 783–804.

    Google Scholar 

  • Fukurotani, K. and Hashimoto, Y. (1984) A new type of S-potential in the retina of cyprinid fish: the tetra-phasic spectral responses. Invest. Ophthalmol. Vis. Sci., 25, (Supp.), 118.

    Google Scholar 

  • Gouras, P. (1972) S-potentials, in Handbook of Sensory Physiology, VII, Part 2. Physiology of Photoreceptor Organs (ed. M.G.F. Fuortes ), Springer-Verlag, Berlin, pp. 513–20.

    Google Scholar 

  • Guthrie, D.M. and Banks, J.R. (1990) The retinotectal pathway in the perch. (Manuscript in preparation).

    Google Scholar 

  • Hankins, M.W. and Ruddock, K.H. (1986) Neuropharmacological actions of kynurenic and quinolinic acids on horizontal cells of the isolated fish retina. Brain Res. (Amsterdam), 380, 297–302.

    Google Scholar 

  • Hashimoto, Y., Abe, M. and Inokuchi, M. (1980) Identification of the interplexiform cell in the dace retina by dye injection method. Brain Res. (Amsterdam), 197, 331–40.

    Google Scholar 

  • Hedden, W.L. and Dowling, J.E. (1978) The interplexiform cell system. II. Effects of dopamine on goldfish retina. Proc. R. Soc., B, 201, 27–55.

    Google Scholar 

  • Hida, E., Negishi, K. and Naka, K.-I. (1984) Effects of dopamine on photopic L- type S-potentials in the catfish retina. J. Neurosci. Res., 11, 373–82.

    Google Scholar 

  • Huang, B.Q. and Djamgoz, M.B.A. (1988) Spectral characteristics of S-potentials. An intracellular horseradish peroxidase study in perch (Perca fluviatilis). Bull. Inst. Zool. Acad. Sig. (Taipei), 27, 183–93.

    Google Scholar 

  • Ishida, A.T., Kaneko, A. and Tachibana, M. (1984) Responses of solitary retinal horizontal cells from Carassius auratus to L-glutamate and related amino acids. J. Physiol., Lond., 348, 255–70.

    Google Scholar 

  • Iversen, L.L. (1984) Amino acids and peptides; fast and slow chemical signals in the nervous system. Proc. R. Soc., B, 221, 245–60.

    Google Scholar 

  • Kaneko, A. (1970) Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol., Lond., 207, 623–33.

    Google Scholar 

  • Kaneko, A. (1971) Electrical connexions between horizontal cells in the dogfish retina. J. Physiol., Lond., 213, 95–105.

    Google Scholar 

  • Kaneko, A. (1973) Receptive field organization of bipolar and amacrine cells in the goldfish retina. J. Physiol., Lond. 235, 133–53.

    Google Scholar 

  • Kaneko, A. (1987) The functional role of retinal horizontal cells. Jap. J. Physiol., 37, 341–58.

    Google Scholar 

  • Kaneko, A. and Hashimoto, H. (1967) Recording site of the single cone response determined by an electrode marking technique. Vision Res., 7, 847–51.

    Google Scholar 

  • Kaneko, A. and Hashimoto, H. (1969) Electrophysiological study of single neurones in the inner nuclear layer of the carp retina. Vision Res., 9, 37–55.

    Google Scholar 

  • Kaneko, A. and Saito, T. (1983) Ionic mechanisms underlying the responses of Off- center bipolar cells in the carp retina. II. Studies on responses evoked by transretinal current stimulation. J. Gen. Physiol., 81, 603–12.

    Google Scholar 

  • Kaneko, A. and Shimazaki, H. (1975a) Effects of external ions on the synaptic transmission from photoreceptors to horizontal cells in the carp retina. J. Physiol., Lond., 252, 509–22.

    Google Scholar 

  • Kaneko, A. and Shimazaki, H. (1975b) Synaptic transmission from photoreceptors to second order neurones in the carp retina. Cold Spring Harb. Symp. Quant. Biol., 40, 537–46.

    Google Scholar 

  • Kaneko, A. and Shimazaki, H. (1976) Synaptic transmission from photoreceptors to second order neurones in the carp retina, in Neural Principles in Vision (eds F. Zettler and R. Weiler ), Springer-Verlag, Berlin, pp. 143–57.

    Google Scholar 

  • Kaneko, A. and Stuart, A.E. (1984) Coupling between horizontal cells in the carp retina recorded by diffusion of Lucifer yellow. Neurosci. Lett., 47, 1–7.

    Google Scholar 

  • Kaneko, A. and Tachibana, M. (1981) Retinal bipolar cells with double colour- opponent receptive fields. Nature, Lond., 293, 220–22.

    Google Scholar 

  • Kaneko, A. and Tachibana, M. (1983) Double colour-opponent receptive fields of carp bipolar cells. Vision Res., 23, 381–8.

    Google Scholar 

  • Kaneko, A. and Tachibana, M. (1985a) Voltage-dependent membrane currents in solitary bipolar cells of the goldfish retina. J. Physiol., Lond., 358, 131–52.

    Google Scholar 

  • Kaneko, A. and Tachibana, M. (1985b) Electrophysiological measurements of the spectral sensitivity of three types of cones in the carp retina. Jap. J. Physiol., 35, 355–65.

    Google Scholar 

  • Kaneko, A. and Tachibana, M. (1986) Membrane potentials of solitary retinal cells. Progress in Retinal Research, 5, 125–46.

    Google Scholar 

  • Kaneko, A. and Tachibana, M. (1987) GAB A mediates the negative feedback from amacrine to bipolar cells. Neuroscience Res. (Shannon, Ireland), Supp. 6, S239–S252.

    Google Scholar 

  • Kaneko, A. and Yamada, M. (1972) S-potentials in the dark-adapted retina of the carp. J. Physiol, Lond., 227, 261–73.

    Google Scholar 

  • Kirsch, M. and Wagner, H.-J. (1989) Release pattern of endogenous dopamine in teleost retinae during light adaptation and pharmacological manipulation. Vision Res., 29, 147–54.

    Google Scholar 

  • Knapp, A.G. and Dowling, J.E. (1987) Dopamine enhances excitatory amino acid- gated conductances in retinal horizontal cells. Nature, Lond., 325, 437–9.

    Google Scholar 

  • Kouyama, N. and Watanabe, K. (1986) Gap-junctional contacts of luminosity-type horizontal cells in the carp retina: a novel pathway of signal conduction from the cell-body to the axon terminal. J. Comp. Neurol., 249, 404–10.

    Google Scholar 

  • Kraft, T.W. and Burkhardt, D.A. (1986) Telodendrites of cone photoreceptors: structure and probable function. J. Comp. Neurol., 249, 13–27.

    Google Scholar 

  • Kuffler, S.W. (1953) Discharge patterns and functional organization of mammalian retina. J. Neurophysiol., 16, 37–68.

    Google Scholar 

  • Kujiraoka, T. and Saito, T. (1986) Electrical coupling between bipolar cells in carp retina. Proc. Natn Acad. Sci. USA, 83, 4063–6.

    Google Scholar 

  • Kujiraoka, T., Saito, T. and Toyoda, J.-I. (1986) Bipolar-amacrine synaptic transmission: effect of polarization of bipolar cells on amacrine cells in the carp retina. Neurosci. Res. (Shannon, Ireland), Supp. 4, S111–S119.

    Google Scholar 

  • Kujiraoka, T., Saito, T. and Toyoda, J.-I. (1988) Analysis of synaptic inputs to ON- OFF amacrine cells of the carp retina. J. Gen. Physiol., 92, 475–87.

    Google Scholar 

  • Kurz-Isler, G. and Wolburg, H. (1986) Gap junctions between horizontal cells in the cyprinid fish alter rapidly their structure during light and dark adaptation. Neurosci. Lett., 67, 7–12.

    Google Scholar 

  • Kurz-Isler, G. and Wolburg, H. (1988) Light-dependent dynamics of gap junctions between horizontal cells in the retina of the crucian carp. Cell Tissue Res., 251, 641–9.

    Google Scholar 

  • Kurz-Isler, G., Wolburg, H., Kolbinger, W. and Weiler, R. (1988) Connexon- density within gap junctions of horizontal cells in the retina is controlled by dopamine, in Proceedings of the 16th Gothingen Neurobiology Conference (eds N. Elesner and F.G. Barth ), Thieme Verlag, p. 247.

    Google Scholar 

  • Lam, D.M.K., Lasater, R. and Naka, K.-I. (1978) Gamma-aminobutyric acid: a neurotransmitter candidate for cone horizontal cells in the catfish retina. Proc. Natn. Acad. Sci. USA, 75, 6310–13.

    Google Scholar 

  • Lamb, T.D. (1976) Spatial properties of the horizontal cell in the turtle retina. J. Physiol. Lond., 263, 239–55.

    Google Scholar 

  • Lamb, T.D. (1986) Transduction in vertebrate photoreceptors: the role of cyclic GMP and calcium. Trends Neurosci., 9, 224–8.

    Google Scholar 

  • Lasater, E.M. (1982a) A white-noise analysis of responses and receptive fields of catfish cones. J. Neurophysiol., 47, 1057–68.

    Google Scholar 

  • Lasater, E.M. (1982b) Spatial receptive fields of catfish retinal ganglion cells. J. Neurophysiol., 48, 823–35.

    Google Scholar 

  • Lasater, E.M. (1986) Ionic currents of cultured horizontal cells isolated from white perch retina. J. Neurophysiol., 55, 499–513.

    Google Scholar 

  • Lasater, E.M. (1988) Membrane currents of retinal bipolar cells in culture. J. Neurophysiol., 60, 1460–80.

    Google Scholar 

  • Lasater, E.M. and Dowling, J.E. (1982) Carp horizontal cells in culture respond selectively to L-glutamate. Proc. Natn Acad. Sci. USA, 79, 936–40.

    Google Scholar 

  • Lasater, E.M. and Dowling, J.E. (1985) Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proc. Natn Acad. Sci. USA, 82, 3025–9.

    Google Scholar 

  • Lasater, E.M. and Lam, D.M.K. (1984) The identification and some functions of GABAergic neurones in the distal catfish retina. Vision Res., 24, 497–506.

    Google Scholar 

  • Laufer, M. and Negishi, K. (1978) Enhancement of hyperpolarizing S-potentials by surround illumination in a teleost retina. Vision Res., 18, 1005–11.

    Google Scholar 

  • Levick, W.R. (1975) Form and function of cat retinal ganglion cells. Nature, Lond., 254, 659–62.

    Google Scholar 

  • Levirie, M.W. and Shefner, J.M. (1979) X-like and not X-like cells in goldfish retina. Vision Res., 19, 95–7.

    Google Scholar 

  • Low, J.C., Yamada, M. and Djamgoz, M.B.A. (1989) Voltage clamp study of amacrine cells in carp retina, in Neurobiology of the Inner Retina (eds R. Weiler and N. Osborne ), Springer-Verlag, Berlin, pp. 495–501.

    Google Scholar 

  • Lythgoe, J.N. and Northmore, D.P.M. (1973) Colours underwater, in Colour 73, The 2nd Congress of the International Colour Association, London, pp. 77–98.

    Google Scholar 

  • Mangel, S.C. and Dowling, J.E. (1985) Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science, N.Y., 229, 1107–9.

    Google Scholar 

  • Mangel, S.C. and Dowling, J.E. (1987) The interplexiform-horizontal cell system of the fish retina: effects of dopamine, light stimulation and time in the dark. Proc. R. Soc., B, 231, 91–121.

    Google Scholar 

  • Mangel, S.C., Ariel, M. and Dowling, J.E. (1985) Effects of acidic amino acid antagonists upon the spectral properties of carp horizontal cells: circuitry of the outer retina. J. Neurosci., 5, 2839–50.

    Google Scholar 

  • Marc, R.E. and Lam, D.M.K. (1981) Uptake of aspartic and glutamic acids by photoreceptors in the goldfish retina. Proc. Natn. Acad. Sci. USA, 78, 7185–9.

    Google Scholar 

  • Marc, R.E., Liu, W.-L. and Muller, J.F. (1988) Gap junctions in the inner plexiform layer of the goldfish retina. Vision Res., 28, 9–24

    Google Scholar 

  • Marchiafava, P.L. (1985) Cell coupling in double cones of the fish retina. Proc. R. Soc., B, 226, 211–15.

    Google Scholar 

  • Marchiafava, P.L., Strettoi, E. and Alpigiani, V. (1985) Intracellular recording from single and double cone cells isolated from the fish retina (Tinea tinea). Exp. Biol., 44, 173–80.

    Google Scholar 

  • Marmarelis, P.Z. and Naka, K.-I. (1972) White-noise analysis of a neuron chain: an application of the Wiener theory. Science, N.Y., 175, 1276–8.

    Google Scholar 

  • Marmarelis, P.Z. and Naka, K.-I. (1973) Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. III. Two input white-noise analyses. J. Neurophysiol., 36, 634–48.

    Google Scholar 

  • Marr, D. (1982) Vision. Freeman, San Francisco.

    Google Scholar 

  • Miles, F.A. (1972a) Centrifugal control of the avian retina. III. Effects of electrical stimulation of the isthmo-optic tract on the receptive field properties of retinal ganglion cells. Brain Res. (Amsterdam), 48, 115–48.

    Google Scholar 

  • Miles, F.A. (1972b) Centrifugal control of the avian retina. IV. Effects of reversible cold block of the isthmo-optic tract on the receptive field properties of cells in the retina and isthmo-optic nucleus. Brain Res. (Amsterdam), 48, 131–45.

    Google Scholar 

  • Miller, R.F. (1979) The neural basis of ganglion cell receptive field organization and the physiology of amacrine cells, in The Neurosciences, Fourth Study Program (eds F.O. Schmitt and F.G. Warden ), MIT Press, Cambridge, Mass., pp. 227–45.

    Google Scholar 

  • Miller, R.F. and Dacheux, R.F. (1976) Synaptic organization and ionic basis of on and off channels in mudpuppy retina. III. A model of ganglion cell receptive field organization based on chloride-free experiments. J. Gen. Physiol., 67, 679–90.

    Google Scholar 

  • Mitarai, G., Asano, T. and Miyake, Y. (1974) Identification of five types of S- potential and their corresponding generating sites in the horizontal cells of the carp retina. Jap. J. Ophthalmol., 18, 161–76.

    Google Scholar 

  • Mitarai, G., Goto, T. and Takagi, S. (1978) Receptive field arrangement of colour- opponent bipolar and amacrine cells in the carp retina. Sens. Process., 2, 375–82.

    Google Scholar 

  • Münz, H. and Claas, B. (1981) Centrifugal innervation of the retina in cichlid and poeciliid fishes. A horseradish peroxidase study. Neurosci. Lett., 22, 223–6.

    Google Scholar 

  • Münz, H., Claas, B., Stumpf, W.E. and Jennes, L. (1982) Centrifugal innervation of the retina by luteinizing hormone releasing hormone (LHRH)-immunoreactive telencephalic neurones in teleostean fish. Cell Tissue Res., 222, 313–23.

    Google Scholar 

  • Murakami, M. and Shimoda, Y. (1977) Identification of amacrine and ganglion cells in the carp retina. J. Physiol., Lond., 265, 801–18.

    Google Scholar 

  • Murakami, M. and Takahashi, K.-I. (1987) Calcium action potential and its use for measurement of reversal potentials of horizontal cell responses in carp retina. J. Physiol., Lond., 386, 165–80.

    Google Scholar 

  • Murakami, M., Shimoda, Y. and Nakatani, K. (1978) Effects of GABA on neural activities in the distal retina of the carp. Sens. Process., 2, 334–8.

    Google Scholar 

  • Murakami, M., Shimoda, Y., Nakatani, K., Miyachi, E. and Watanabe, S. (1982a) GABA mediated negative feedback from horizontal cells to cones in carp retina. Jap. J. Physiol., 32, 911–26.

    Google Scholar 

  • Murakami, M., Shimoda, Y., Nakatani, K., Miyachi, E. and Watanabe, S. (1982b) GABA mediated negative feedback and colour opponency in carp retina. Jap. J. Physiol., 32, 927–35.

    Google Scholar 

  • Naka, K.-I. (1977) Functional organization of catfish retina. J. Neurophysiol., 36, 502–18.

    Google Scholar 

  • Naka, K.-I. (1980) A class of catfish amacrine cells responds preferentially to objects which move vertically. Vision Res., 20, 961–5.

    Google Scholar 

  • Naka, K.-I. and Carraway, N.R.G. (1975) Morphological and functional identification of catfish retinal neurones. I. Classical morphology. J. Neurophysiol., 38, 53–71.

    Google Scholar 

  • Naka, K.-I. and Christensen, B.N. (1981) Direct electrical connections between transient amacrine cells in the catfish retina. Science, N.Y., 214, 462–4.

    Google Scholar 

  • Naka, K.-I. and Rushton, W.A.H. (1966a) S-potentials from colour units in the retina of fish (Cyprinidae). J. Physiol., Lond., 185, 536–55.

    Google Scholar 

  • Naka, K.-I. and Rushton, W.A.H. (1966b) An attempt to analyse colour reception by electrophysiology. J. Physiol., Lond., 185, 556–86.

    Google Scholar 

  • Naka, K.-I. and Rushton, W.A.H. (1966c) S-potentials from luminosity units in the retina of fish (Cyprinidae). J. Physiol., Lond., 185, 587–99.

    Google Scholar 

  • Naka, K.-I. and Rushton, W.A.H. (1967) The generation and spread of S-potentials in fish (Cyprinidae). J. Physiol., Lond., 192, 437–61.

    Google Scholar 

  • Nawy, S. and Copenhagen, D.R. (1987) Multiple classes of glutamate receptor on depolarizing bipolar cells in retina. Nature, Lond., 325, 56–8.

    Google Scholar 

  • Negishi, K. and Drujan, B.D. (1978) Effects of catecholamines on the horizontal cell membrane potential in the fish retina. Sens. Process., 2, 388–95.

    Google Scholar 

  • Negishi, K. and Drujan, B.D. (1979) Effects of catecholamines and related compounds on horizontal cells in the fish retina. J. Neurosci., 4, 311–34.

    Google Scholar 

  • Neumeyer, C. (1984) On spectral sensitivity in the goldfish. Evidence for neural interactions between different “cone mechanisms”. Vision Res., 24, 1223–31.

    Google Scholar 

  • Neumeyer, C. (1986) Wavelength discrimination in the goldfish. J. Comp. Physiol., A, 158, 203–13.

    Google Scholar 

  • Norton, A.L., Spekreijse, H., Wolbarsht, M.W. and Wagner, H.G. (1968) Receptive field organisation of the S-potential. Science, N.Y., 160, 1021–2.

    Google Scholar 

  • Orlov, O.Yu. and Maksimova, E.M. (1965) S-potential sources as excitation pools. Vision Res., 5, 573–82.

    Google Scholar 

  • Piccolino, M. (1986) Horizontal cells: historical controversies and new interests. Progress in Retinal Research, 6, 147–64.

    Google Scholar 

  • Prince, D.J., Djamgoz, M.B.A. and Karten, H.J. (1987) GAB A transaminase in cyprinid fish retina: localization and effects of inhibitors on temporal characteristics of S-potentials. Neurochem. Int., 11, 23–30.

    Google Scholar 

  • Saito, T. and Kaneko, A. (1983) Ionic mechanisms underlying the responses of off- centre bipolar cells in the carp retina. I. Studies on responses evoked by light. J. Gen. Physiol., 81, 589–601.

    Google Scholar 

  • Saito, T. and Kujiraoka, T. (1982) Physiological and morphological identification of two types of on-center bipolar cells in the carp retina. J. Comp. Neurol., 205, 161–70.

    Google Scholar 

  • Saito, T. and Kujiraoka, T. (1988) Characteristics of bipolar-bipolar coupling in the carp retina. J. Gen. Physiol., 91, 275–87.

    Google Scholar 

  • Saito, T., Kondo, H. and Toyoda, J.-I. (1979) Ionic mechanisms of two types of on- center bipolar cells in the carp retina. I. The responses to central illumination. J. Gen. Physiol., 73, 73–90.

    Google Scholar 

  • Saito, T., Kujiraoka, T. and Toyoda, J.-I. (1984) Electrical and morphological properties of off-center bipolar cells in the carp retina. J. Comp. Neurol., 22, 200–208.

    Google Scholar 

  • Saito, T., Kujiraoka, T., Yonaha, T. and Chino, Y. (1985) Reexamination of photoreceptor-bipolar connectivity patterns in carp retina: HRP-EM and Golgi- EM studies. J. Comp. Neurol., 236, 141–60.

    Google Scholar 

  • Sakai, H. and Hashimoto, Y. (1983) Rod input to amacrine cells in dace retina. Brain Res. (Osaka), 270, 345–9.

    Google Scholar 

  • Sakai, H. and Naka, K.-I. (1983) Synaptic organizations involving receptor, horizontal and on- and off-centre bipolar cells in catfish retina. Vision Res., 23, 339–51.

    Google Scholar 

  • Sakai, H. and Naka, K.-I. (1986) Synaptic organization of the cone horizontal cells in the catfish retina. J. Comp. Neurol., 245, 107–15.

    Google Scholar 

  • Sakai, H.M. and Naka, K.-I. (1987) Signal transmission in the catfish retina. IV. Transmission to ganglion cells. J. Neurophysiol., 58, 1307–28.

    Google Scholar 

  • Sakai, H.M. and Naka, K.-I. (1988) Dissection of the neuron network in the catfish inner retina. II. Interactions between ganglion cells. J. Neurophysiol., 60, 1568–83.

    Google Scholar 

  • Scholes, J.H. (1975) Colour receptors and their synaptic connections in the retina of a cyprinid fish. Phil. Trans. R. Soc., B, 270, 61–118.

    Google Scholar 

  • Scholes, J.H. (1976) Neural connections and cellular arrangement in the fish retina, in Neural Principles in Vision (eds F. Zettler and R. Weiler ), Springer-Verlag, Berlin, pp. 63–93.

    Google Scholar 

  • Scholes, J.H. (1979) Nerve topography in the retinal projection to the tectum. Nature, Lond., 278, 620–24.

    Google Scholar 

  • Shapley, R.M. and Gordon, J. (1978) The eel retina: ganglion cell classes and spatial mechanisms. J. Gen. Physiol., 71, 139–55.

    Google Scholar 

  • Shiells, R.A., Falk, G. and Naghshineh, S. (1981) Action of glutamate and aspartate analogues on rod horizontal and bipolar cells. Nature, Lond., 294, 592–4.

    Google Scholar 

  • Shigematsu, Y. and Yamada, M. (1988) Effects of dopamine on spatial properties of horizontal cell responses in the carp retina. Neuroscience Res. (Shannon, Ireland), Supp. 8, S69–S80.

    Google Scholar 

  • Shigematsu, Y., Yamada, M. and Fuwa, M. (1978) Latency measurement of the color coded S-potentials in the carp retina. Vision Res., 10, 1435–7.

    Google Scholar 

  • Shingai, R. and Christensen, B.N. (1983) Sodium and calcium currents measured in isolated catfish horizontal cells under voltage clamp. Neuroscience, 10, 893–7.

    Google Scholar 

  • Spekreijse, H. and Norton, A.L. (1970) The dynamic characteristics of color-coded S-potentials. J. Gen. Physiol., 56, 1–15.

    Google Scholar 

  • Spekreijse, H., Wagner, H.G. and Wolbarsht, M.L. (1972) Spectral and spatial coding of ganglion cell responses in goldfish retina. J. Neurophysiol., 35, 73–86.

    Google Scholar 

  • Stell, W.K. (1967) The structure and relationship of horizontal cells and photoreceptor- bipolar synaptic complexes in goldfish retina. Am. J. Anat., 121, 401–24.

    Google Scholar 

  • Stell, W.K. (1978) Inputs to bipolar cell dendrites in goldfish retina. Sens. Process., 2, 339–49.

    Google Scholar 

  • Stell, W.K. (1980) Photoreceptor-specific synaptic pathways in goldfish retina: a world of colour, a wealth of connections, in Colour Vision Deficiencies V (ed. G. Verriest ), Adam Hilger, Bristol, pp. 1–14.

    Google Scholar 

  • Stell, W.K. (1985) Putative peptide transmitters, amacrine cell diversity and function in the inner plexiform layer, in Neurocircuitry of the Retina, A Cajal Mamorial (eds A. Gallego and P. Gouras ), Elsevier, New York, pp. 171–87.

    Google Scholar 

  • Stell, W.K. and Harosi, F. (1976) Cone structure and visual pigment content in the retina of the goldfish. Vision Res., 16, 647–57.

    Google Scholar 

  • Stell, W.K. and Lightfoot, D.O. (1975) Colour-specific interconnections of cones and horizontal cells in the retina of the goldfish. J. Comp. Neurol., 159, 473–502.

    Google Scholar 

  • Stell, W.K., Lightfoot, D.O., Wheeler, T.G. and Leeper, H.F. (1975) Goldfish retina: functional polarization of cone horizontal cell dendrites and synapses. Science, N.Y., 190, 989–90.

    Google Scholar 

  • Stell, W.K., Walker, S.E., Chohan, K.S. and Ball, A.K. (1984) The goldfish nervus terminalis: a leuteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway. Proc. Natn Acad. Sci. USA, 81, 940–44.

    Google Scholar 

  • Stryer, L. (1986) Cyclic GMP cascade of vision. A. Rev. Neurosci., 9, 87–119.

    Google Scholar 

  • Sugawara, K. (1985) Lateral actions at the inner plexiform layer of the carp retina: effects of turning windmill pattern stimulus. Vision Res., 25, 1179–86.

    Google Scholar 

  • Svaetichin, G. (1953) The cone action potential. Acta Physiol. Scand., 29, 565–600.

    Google Scholar 

  • Svaetichin, G. and MacNichol, E.F., jun. (1958) Retinal mechanisms for chromatic and achromatic vision. Ann. N.Y. Acad. Sci., 74, 388–404.

    Google Scholar 

  • Tachibana, M. (1981) Membrane properties of solitary horizontal cells isolated from goldfish retina. J. Physiol., Lond., 321, 141–61.

    Google Scholar 

  • Tachibana, M. (1983) Ionic currents of solitary horizontal cells isolated from goldfish retina. J. Physiol., Lond., 345, 329–51.

    Google Scholar 

  • Tachibana, M. (1985) Permeability changes induced by L-glutamate in solitary horizontal cells isolated from Carassius auratus. J. Physiol., Lond., 358, 153–67.

    Google Scholar 

  • Tachibana, M. and Kaneko, A. (1984) Gamma-aminobutyric acid acts at axon terminals of turtle photoreceptors: difference in sensitivity among cell types. Proc. Natn Acad. Sci. USA, 81, 7961–4.

    Google Scholar 

  • Tachibana, M. and Kaneko, A. (1987) Gamma-aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. Proc. Natn Acad. Sci. USA, 84, 3501–5.

    Google Scholar 

  • Takahashi, K.-I. and Murakami, M. (1988) Calcium action potential in ON-OFF transient amacrine cell of the carp retina. Brain Res. (Amsterdam), 456, 29–37.

    Google Scholar 

  • Tamura, T. and Niwa, H. (1967) Spectral sensitivity and colour vision of fish as indicated by S-potential. Comp. Biochem. Physiol., 22, 745–54.

    Google Scholar 

  • Tauchi, M., Yang, X.-L. and Kaneko, A. (1984) Depolarizing responses of L-type external horizontal cells in the goldfish retina under intense chromatic background. Vision Res., 24, 867–70.

    Google Scholar 

  • Teranishi, T., Kato, S. and Negishi, K. (1982) Lateral spread of S-potential components in the carp retina. Expl Eye Res., 34, 389–99.

    Google Scholar 

  • Teranishi, T., Negishi, K. and Kato, S. (1983) Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina. Nature, Lond., 301, 243–6.

    Google Scholar 

  • Teranishi, T., Negishi, K. and Kato, S. (1984) Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina. J. Neurosci., 4, 1271–80.

    Google Scholar 

  • Teranishi, T., Negishi, K. and Kato, S. (1987) Functional and morphological correlates of amacrine cells in carp retina. Neuroscience, 20, 935–50.

    Google Scholar 

  • Thibos, L.N. and Werblin, F.S. (1978) The response properties of the steady antagonistic surround in the mudpuppy retina. J. Physiol., Lond., 278, 79–99.

    Google Scholar 

  • Tomita, T. (1965) Electrophysiological study of the mechanisms subserving colour coding in the fish retina. Cold Spring Harb. Symp. Quant. Biol., 30, 559–66.

    Google Scholar 

  • Tomita, T. (1970) Electrical activity of vertebrate photoreceptors. Q. Rev. Biophys., 3, 197–222.

    Google Scholar 

  • Tomita, T., Kaneko, A., Murakami, M. and Pautler, E.L. (1967) Spectral response curves of single cones in the carp. Vision Res., 7, 519–31.

    Google Scholar 

  • Toyoda, J.-I. (1973) Membrane resistance changes underlying the bipolar cell response in the carp retina. Vision Res., 13, 283–94.

    Google Scholar 

  • Toyoda, J.-I. and Fujimoto, M. (1983) Analyses of neural mechanisms mediating the effect of horizontal cell polarization. Vision Res., 23, 1143–50.

    Google Scholar 

  • Toyoda, J.-I. and Fujimoto, M. (1984) Application of transretinal current stimulation for the study of bipolar-amacrine transmission. J. Gen. Physiol., 84, 915–25.

    Google Scholar 

  • Toyoda, J.-I. and Kujiraoka, T. (1982) Analysis of bipolar cell responses elicited by polarization of horizontal cells. J. Gen. Physiol., 79, 131–45.

    Google Scholar 

  • Toyoda, J.-I. and Tonosaki, K. (1978a) Effect of polarization of horizontal cells on the on-center bipolar cell of carp retina. Nature, Lond., 276, 399–400.

    Google Scholar 

  • Toyoda, J.-I. and Tonosaki, K. (1978b) Studies on the mechanisms underlying horizontal-bipolar interaction in the carp retina. Sens. Process., 2, 359–65.

    Google Scholar 

  • Toyoda, J.-I., Hashimoto, H. and Ohtsu, K. (1973) Bipolar-amacrine transmission in the carp retina. Vision Res., 13, 295–307.

    Google Scholar 

  • Toyoda, J.-I., Nosaki, H. and Tomita, T. (1969) Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res., 9, 453–63.

    Google Scholar 

  • Trifonov, Yu.A. (1969) Study of synaptic transmission between the photoreceptor and the horizontal cell using electrical stimulation of the retina. Biofizika, 13, 948–57.

    Google Scholar 

  • Trifonov, Yu.A., Byzov, A.L. and Chailahian, L.M. (1974) Electrical properties of subsynaptic and nonsynaptic membranes of horizontal cells in fish retina. Vision Res., 14, 229–41.

    Google Scholar 

  • Tsukamoto, Y., Yamada, M. and Kaneko, A. (1987) Morphological and physiological studies of rod-driven horizontal cells with special reference to the question of whether they have axons and axon terminals. J. Comp. Neurol., 255, 305–16.

    Google Scholar 

  • Umino, O. and Dowling, J.E. (1988) The effects of LHRH and FMRF-amide on horizontal cells in the white perch retina. Invest. Ophthalmol. Vis. Sci., 29 (Suppl.), 102.

    Google Scholar 

  • Wagner, H.G., MacNichol, E.F., jun. and Wolbarsht, M.L. (1960) The response properties of single ganglion cells in the goldfish retina. J. Gen. Physiol., 43, 43–62.

    Google Scholar 

  • Wagner, H.G., MacNichol, E.F., jun. and Wolbarsht, M.L. (1963) Functional basis for ‘on’-center and ‘off’-center receptive fields in the retina. J. Opt. Soc. Am., 53, 66–70.

    Google Scholar 

  • Wagner, H.-J., Speck, P.T. and Weiler, R. (1982) Computer reconstruction of HRP- injected horizontal cells reveals new connectivity in fish retina. Naturwissenschaften, 69, 143–4.

    Google Scholar 

  • Walker, S.E. and Stell, W.K. (1986) Gonadotropin-releasing hormone and molluscan cardioexcitatory peptide, enkephalin and related peptides affect goldfish retinal ganglion cell activity. Brain Res. (Amsterdam), 384, 262–73.

    Google Scholar 

  • Wässle, H. (1982) Morphological types and central projections of ganglion cells in the cat retina. Progress in Retinal Research, 1, 125–52.

    Google Scholar 

  • Watanabe, S.-I. and Murakami, M. (1985) Electrical properties of ON-OFF transient amacrine cells in the carp retina. Neuroscience Res. (Shannon, Ireland), Supp. 2, S201–S210.

    Google Scholar 

  • Weiler, R. (1985) Afferent and efferent peptidergic pathways in the turtle retina, in Neurocircuitry of the Retina, A Cajal Memorial (eds A. Gallego and P. Gouras ), Elsevier, New York, pp. 245–56.

    Google Scholar 

  • Weiler, R. and Wagner, H.-J. (1984) Light-dependent change of cone-horizontal cell interactions in carp retina. Brain Res. (Amsterdam), 298, 1–9.

    Google Scholar 

  • Weiler, R. and Zettler, F. (1979) The axon-bearing horizontal cells in the teleost retina are functional as well as structural units. Vision Res., 19, 1261–8.

    Google Scholar 

  • Weiss, O. and Meyer, D.L. (1988) Odor stimuli modulate retinal excitability in fish. Neurosci. Lett., 93, 209–13.

    Google Scholar 

  • Werblin, F.S. (1977) Synaptic interactions mediating bipolar response in the retina of tiger salamander, in Vertebrate Photoreception (eds H.B. Barlow and P. Fatt ), Academic Press, London, pp. 205–30.

    Google Scholar 

  • Werblin, F.S. (1979) Integrative pathways in local circuits between slow-potential cells in the retina, in The Neurosciences, Fourth Study Program (eds F.O. Schmitt and F.G. Worden ), MIT Press, Cambridge, Mass., pp. 193–211.

    Google Scholar 

  • Witkovsky, P. (1967) A comparison of ganglion cell and S-potential response properties in carp retina. J. Neurophysiol., 30, 546–61.

    Google Scholar 

  • Witkovsky, P. (1971) Synapses made by myelinated fibres running to teleost and elasmobranch retinas. J. Comp. Neurol., 142, 205–22.

    Google Scholar 

  • Witkovsky, P. and Dowling, J.E. (1969) Synaptic relationships of the plexiform layers of carp retina. Z. Zellforsch. mikrosk. Anat., 100, 60–82.

    Google Scholar 

  • Wolburg, H. and Kurz-Isler, G. (1985) Dynamics of gap junctions between horizontal cells in the goldfish retina. Exp. Brain Res., 60, 397–401.

    Google Scholar 

  • Wolburg, H. and Kurz-Isler, G. (1988) The light-sensitivity of gap junction structure in retinal horizontal cells is dependent on the intact optic nerve. Neurosci. Lett., Supp., 152.

    Google Scholar 

  • Wunk, U.F. and Werblin, F.S. (1979) Synaptic inputs to the ganglion cells in the tiger salamander retina. J. Gen. Physiol., 73, 265–86.

    Google Scholar 

  • Yagi, T. (1986) Interaction between the soma and the axon terminal of retinal horizontal cells in Cyprinus carpio. J. Physiol., Lond., 375, 121–35.

    Google Scholar 

  • Yagi, T. and Kaneko, A. (1987) Membrane properties of the signal conduction of the horizontal cell syncytium of the teleost retina. Neuroscience Res. (Shannon, Ireland), Supp. 6, S119–S132.

    Google Scholar 

  • Yagi, T. and Kaneko, A. (1988) The axon terminal of goldfish retinal horizontal cells: a low membrane conductance measured in solitary preparations and its implication to the signal conductance from the soma. J. Neurophysiol., 59, 482–94.

    Google Scholar 

  • Yamada, E. and Ishikawa, T. (1965) The fine structure of the horizontal cells in some vertebrate retinae. Cold Spring Harb. Symp. Quant. Biol., 30, 383–92.

    Google Scholar 

  • Yamada, M. and Saito, T. (1988) Effects of dopamine on bipolar cells in the carp retina. Biomed. Res., 9, Suppl. 2, 125–130.

    Google Scholar 

  • Yamada, M. and Shigematsu, Y. (1987) Length constant of horizontal cell axon terminals are little affected by dopamine. J. Physiol. Soc. Jpn, 49, 451.

    Google Scholar 

  • Yamada, M. and Shigematsu, Y. (1990) Dopamine decreases receptive field size of rod horizontal cells in carp retina. (In preparation).

    Google Scholar 

  • Yamada, M. and Yasui, S. (1988) Measurement of DC and AC spectral sensitivities of retinal horizontal cells by ‘voltage clamp by light’. J. Neurosci. Methods, 24, 65–72.

    Google Scholar 

  • Yamada, M., Shigematsu, Y. and Fuwa, M. (1985) Latency of horizontal cell response in the carp retina. Vision Res., 25, 767–74.

    Google Scholar 

  • Yang, X.-L., Tauchi, M. and Kaneko, A. (1983) Convergence of signals from red- sensitive and green-sensitive cones onto L-type external horizontal cells of the goldfish retina. Vision Res., 23, 371–80.

    Google Scholar 

  • Yang, X.-L., Tornqvist, K. and Dowling, J.E. (1988) Modulation of cone horizontal cell activity in the teleost fish retina. I. Effects of prolonged darkness and background illumination on light responsiveness. J. Neurosci., 8, 2259–68.

    Google Scholar 

  • Yasui, S. and Yamada, M. (1989) HI horizontal cells of carp retina have different postsynaptic mechanisms to mediate short- versus long-wavelength visual signals. Exp. Brain Res., 74, 256–62.

    Google Scholar 

  • Yasui, S. and Yamada, M. (1989) HI horizontal cells of carp retina have different postsynaptic mechanisms to mediate short- versus long-wavelength visual signals. Exp. Brain Res., 74, 256–62.

    Google Scholar 

  • Zucker, C.L. and Dowling, J.E. (1987) Centrifugal fibres synapse on dopaminergic interplexiform cells in the teleost retina. Nature, Lond., 330, 166–8.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Djamgoz, M.B.A., Yamada, M. (1990). Electrophysiological characteristics of retinal neurones: synaptic interactions and functional outputs. In: Douglas, R., Djamgoz, M. (eds) The Visual System of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0411-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0411-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6672-3

  • Online ISBN: 978-94-009-0411-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics