Skip to main content

Behavioural studies of fish vision: an analysis of visual capabilities

  • Chapter
The Visual System of Fish

Abstract

What can fish see? This is the central question of this chapter. To find out what a human perceives is (although our colleagues in the field of human psychophysics will undoubtedly disagree) a relatively easy task: all you have to do is ask them! It is difficult to apply a comparable criterion to animals. Given the fact that fish cannot speak, one has to rely on monitoring some form of behaviour that is modulated by visual stimuli to find out what the fish can see.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho, A.C., Donner, K., Hyden, C., Larsen, L.O. and Reuter, T. (1988) Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature, Lond, 334, 348–50.

    Google Scholar 

  • Ali, M.A. (1959) The ocular structure, retinomotor and photobehavioural responses of juvenile pacific salmon. Can. J. Zool., 37, 965–96.

    Google Scholar 

  • Ali, M.A. and Kobayashi, H. (1967) Temperature: influence on the electroretinogram- flicker fusion frequency of the sunfish (Lepomis gibbosus L.). Rev. Can. Biol., 26, 341–5.

    Google Scholar 

  • Ali, M.A. and Kobayashi, H. (1968) Electroretinogram-flicker fusion frequency in albino trout. Experientia, 24, 454–5.

    Google Scholar 

  • Allen, E.E. and Fernald, R.D. (1985) Spectral sensitivity of the African cichlid fish, Haplochromis burtoni.J. Comp. Physiol., A, 157, 247–53.

    Google Scholar 

  • Anthony, P.D. (1981) Visual contrast thresholds in the cod Gadus morhua L. J. Fish Biol., 19, 87–103.

    Google Scholar 

  • Avery, J.A. and Bowmaker, J.K. (1982) Visual pigments in the four eyed fish Anableps anableps. Nature, Lond, 298, 62–3.

    Google Scholar 

  • Avery, J.A., Bowmaker, J.K., Djamgoz, M.B.A. and Downing, J.E.G. (1983) Ultra¬violet sensitive receptors in a freshwater fish. J. Physiol., Lond., 334, 23 P.

    Google Scholar 

  • Baburina, E.A., Bogatyrev, P.B. and Protasov, V.R. (1968) A study of age variation of acuity of sight of some fish. Zool. Zh., 47, 1364–9.

    Google Scholar 

  • Baerends, G.P., Bennema, B.E. and Vogelzang, A.A. (1960) Ãœber die Änderung der Sehschärfe mit dem Wachstum bei Aequidens portalegrensis (Hensel) (Pisces, Cichlidae). Zool. Jb. Abt. Syst. Oko., 88, 67–78.

    Google Scholar 

  • Bagarinao, T. and Hunter, J.R. (1983) The visual feeding threshold and action spectrum of northern anchovy (Engraulis mordax) larvae. Calif. Coop. Oceanic Fish. Invest. Rep., 14, 245–54.

    Google Scholar 

  • Bassi, C.J. and Powers, M.K. (1986) Lengthened rod outer segments correlate with increased visual sensitivity in goldfish. Invest. Ophthalmol. Vis. Sci., 27 (Supp.), 236.

    Google Scholar 

  • Bassi, C.J. and Powers, M.K. (1987) Circadian rhythm in goldfish visual sensitivity. Invest. Ophthalmol. Vis. Sci., 28, 1811–15.

    Google Scholar 

  • Bassi, C.J., Williams, R.C. and Powers, M.K. (1984) Light transmittance by goldfish eyes of different sizes. Vision Res, 24, 1415–19.

    Google Scholar 

  • Bauer, V. (1910) Ãœber das Farbenunterscheidungsvermögen der Fische. Pflugers Arch. ges. Physiol., 133, 7–26.

    Google Scholar 

  • Baylor, E.R. and Shaw, E. (1962) Refractive error and vision in fishes. Science, N.Y., 136, 157–8.

    Google Scholar 

  • Beauchamp, R.D. and Rowe, J.S. (1977) Goldfish spectral sensitivity: a conditioned heart rate measure in restrained or curarized fish. Vision Res, 17, 617–24.

    Google Scholar 

  • Beauchamp, R.D., Rowe, J.S. and O’Reilly, L.A. (1979) Goldfish spectral sensitivity: identification of the three cone mechanisms in heart-rate conditioned fish using colored adapting backgrounds. Vision Res,19,1295–302.

    Google Scholar 

  • Bell, D.M. (1982) Physiological and psychophysical spectral sensitivities of the cichlid fish, Hemichromis bimaculatus. J. Exp. Zool., 223, 29–32.

    Google Scholar 

  • Beniuc, M. (1933) Bewegungssehen, Verschmelzung und Moment bei Kampffischen. Z. vergl. Physiol., 19, 724–46.

    Google Scholar 

  • Bernard, G.D. and Wehner, R. (1977) Functional similarities between polarization vision and colour vision. Vision Res, 17, 1019–28.

    Google Scholar 

  • Bernard, G.D. and Wehner, R. (1977) Functional similarities between polarization vision and colour vision. Vision Res, 17, 1019–28.

    Google Scholar 

  • Blackwell, R.H. (1946) Contrast thresholds of the human eye. J. Opt. Soc. Am., 36, 624–43.

    Google Scholar 

  • Blaxter, J.H.S. (1964) Spectral sensitivity of the herring, Clupea harengus L.J. Exp. Biol., 41, 155–62.

    Google Scholar 

  • Blaxter, J.H.S. (1966) The effect of light intensity on the feeding ecology of herring. Symp. Br. Ecol. Soc., 6, 393–409.

    Google Scholar 

  • Blaxter, J.H.S. (1968a) Visual thresholds and spectral sensitivity of herring larvae. J. Exp. Biol., 48, 39–53.

    Google Scholar 

  • Blaxter, J.H.S. (1968b) Light intensity, vision, and feeding in young plaice. J. Exp. Mar. Biol. Ecol., 2, 293–307.

    Google Scholar 

  • Blaxter, J.H.S. (1969) Visual thresholds and spectral sensitivity of flatfish larvae. J. Exp. Biol., 51, 221–30.

    Google Scholar 

  • Blaxter, J.H.S. (1970) 2. Light 2.3 Animals 2.32 Fishes, in Marine Ecology, Vol. 1, pt 1 (ed. O. Kinne), Wiley, London, pp. 213–320.

    Google Scholar 

  • Blaxter, J.H.S. (1972) Brightness discrimination in larvae of plaice and sole. J. Exp. Biol., 57, 693–700.

    Google Scholar 

  • Blaxter, J.H.S. (1975) The role of light in the vertical migration of fish: a review, in Light as an Ecological Factor II (eds G.C. Evans, R. Bainbridge and O. Rackham ), Blackwell, Oxford, pp. 189–210.

    Google Scholar 

  • Blaxter, J.H.S. and Jones, M.P. (1967) The development of the retina and retinomotor responses in the herring. J. Mar. Biol. Ass. UK, 47, 677–97.

    Google Scholar 

  • Blough, D.S. and Yager, D. (1972) Visual psychophysics in animals, in Handbook of Sensory Physiology, VII/4 (eds D. Jameson and L.M. Hurvich ), Springer-Verlag, Berlin, Heidelberg, New York, pp. 732–63.

    Google Scholar 

  • Bogenschutz, H. (1961) Vergleichende Untersuchungen über die optische Komponente der Gleichgewichtshaltung bei Fischen. Z. vergl. Physiol., 44, 626 - 55.

    Google Scholar 

  • Bowmaker, J.K. and Kunz, Y.W. (1987) Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in brown trout (Salmo trutta): age-dependent changesVision Res., 27, 2101–8.

    Google Scholar 

  • Braemer, W. (1957) Verhaltensphysiologische Untersuchungen am optischen Apparat bei Fischen. Z. vergl. Physiol., 39, 374–98.

    Google Scholar 

  • Branchek, T. (1984) The development of photoreceptors in the zebrafish, Brachydanio rerio. II. Function. J. Comp. Neurol., 224, 116–22.

    Google Scholar 

  • Brecher, G.A. (1933) Die Entstehung und biologische Bedeutung der subjecktiven Zeiteinheit - des Momentes. Z. vergl. Physiol., 18, 204–43.

    Google Scholar 

  • Breck, J.E. and Gitter, M.J. (1983) Effect of fish size on the reactive distance of bluegill (Lepomis macrochirus) sunfish. Can. J. Fish. Aquat. Sci., 40, 162–7.

    Google Scholar 

  • Brett, J.R. and Groot, C. (1963) Some aspects of olfactory and visual responses in pacific salmon. J. Fish. Res. Bd Can., 20, 287–303.

    Google Scholar 

  • Brunner, G. (1934) Ãœber die Sehschärfe der Elritze (.Phoxinus laevis) bei verschiedenen Helligkeiten. Z. vergl. Physiol., 21, 296 - 316.

    Google Scholar 

  • Canella, M.F. (1937) Influence des excitations lumineuses sur la position d’équilibre des poissons. C. R. Séanc. Soc. Biol, 124, 543–4.

    Google Scholar 

  • Charman, W.N. and Tucker, J. (1973) The optical system of the goldfish eye. Vision Res, 13, 1–8.

    Google Scholar 

  • Chen, D.M. and Goldsmith, T.H. (1986) Four spectral classes of cone in the retinas of birds. J. Comp. Physiol, A, 159, 473–9.

    Google Scholar 

  • Clark, D.T. (1981) Visual responses in developing zebrafish (Brachydanio rerio) PhD thesis, University of Oregon, USA.

    Google Scholar 

  • Clarke, G.L. and Denton, E.J. (1962) Light and animal life, in The Sea: Vol. 1 (ed. M.N. Hill ), Wiley, New York, pp. 456–68.

    Google Scholar 

  • Clausen, R.G. (1931) Orientation in fresh water fishes. Ecology, 12, 541–6.

    Google Scholar 

  • Collett, T.S. and Harkness, L. (1982) Distance vision in animals, in Advances in the Analysis of Visual Behaviour (eds D.J. Ingle, M. Goodale and J.W. Mansfield ), MIT Press, Cambridge, Mass., pp. 111–76.

    Google Scholar 

  • Cronly-Dillon, J.R. and Müntz, W.R.A. (1965) The spectral sensitivity of the goldfish and the clawed toad tadpole under photopic conditions. J. Exp. Biol., 42, 481–93.

    Google Scholar 

  • Cronly-Dillon, J.R. and Sharma, S.C. (1968) Effect of season and sex on the photopic spectral sensitivity of the three-spined stickleback. J. Exp. Biol., 49, 679–87.

    Google Scholar 

  • Crozier, W.J. and Wolf, E. (1940) The flicker response curve for Fundulus. J. Gen. Physiol., 23, 677–94.

    Google Scholar 

  • Crozier, W.J., Wolf, E. and Zerrahn-Wolf, G. (1936) On critical frequency and critical illumination for response to flickered light. J. Gen. Physiol., 20, 211–28.

    Google Scholar 

  • Crozier, W.J., Wolf, E. and Zerrahn-Wolf, G. (1937) Temperature and critical illumination for reaction to flickering light - II sunfish. J. Gen. Physiol., 20, 411–31.

    Google Scholar 

  • Crozier, W.J., Wolf, E. and Zerrahn-Wolf, G. (1939) Temperature and critical illumination for reaction to flickering light - III sunfish. J. Gen. Physiol., 22, 487–99.

    Google Scholar 

  • Davis, R.E. and Schlumpf, B.E. (1983) Circumvention of extraretinal photoresponses in assessing recovery of vision following optic nerve crush in goldfish. Behav. Brain Res., 7, 65–79.

    Google Scholar 

  • Davitz, M.A. and McKaye, K.R. (1978) Discrimination between horizontally and vertically polarized light by the cichlid fish Pseudotropheus macrophthalmus. Copeia, 2, 333–4.

    Google Scholar 

  • Dearry, A. and Barlow, R.B. (1987) Circadian rhythms in the green sunfish retina. J. Gen. Physiol, 89, 745–70.

    Google Scholar 

  • Denton, E.J. and Pirenne, M.H. (1954) The absolute sensitivity and functional stability of the human eye. J. Physiol Lond., 123, 417–42.

    Google Scholar 

  • Denton, E.J. and Warren, F.J. (1957) The photosensitive pigments in the retinae of deep-sea fish. J. Mar. Biol Ass. UK, 36, 651–62.

    Google Scholar 

  • Dill, P.A. (1971) Perception of polarized light by yearling sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Bd Can., 28, 1319–22.

    Google Scholar 

  • Douglas, R.H. (1980) Visual adaptation and spectral sensitivity in rainbow trout, PhD thesis, University of Stirling, UK.

    Google Scholar 

  • Douglas, R.H. (1982) The function of photomechanical movements in the retina of the rainbow trout (Salmo gairdneri). J. Exp. Biol, 96, 389–403.

    Google Scholar 

  • Douglas, R.H. (1983) Spectral sensitivity of rainbow trout (Salmo gairdneri). Rev. Can. Biol, 42, 117–22.

    Google Scholar 

  • Douglas, R.H. (1986) Photopic spectral sensitivity of a teleost fish, the roach (Rutilus rutilus), with special reference to its ultraviolet sensitivity. J. Comp. Physiol, A, 159, 415–21.

    Google Scholar 

  • Douglas, R.H. (1989) The spectral transmission of the lens and cornea of the brown trout (Salmo trutta) and goldfish (Carassius auratus): effect of age and implications for ultraviolet vision. Vision Res., 29, 861–9.

    Google Scholar 

  • Douglas, R.H. and McGuigan, C.M. (1989) The spectral transmission of freshwater teleost ocular media - an interspecific comparison and a guide to potential ultraviolet sensitivity. Vision Res., 29, 871–9.

    Google Scholar 

  • Douglas, R.H., Eva, J. and Guttridge, N. (1988) Size constancy in goldfish (Carassius auratus). Behav. Brain Res., 30, 37–42.

    Google Scholar 

  • Douglas, R.H., Bowmaker, J.K. and Kunz-Ramsay, Y.W. (1989) Ultraviolet vision in fish, in Seeing Contour and Colour (eds J.J. Kulikowski, C.M. Dickinson and I.J. Murray ), Pergamon Press, Oxford, pp. 601–16.

    Google Scholar 

  • Dyer, R.S. and Rigdon G.C. (1987) Urethane affects the rat visual system at subanaesthetic doses. Physiol Behav., 41, 327–30.

    Google Scholar 

  • Easter, S.S. (1972) Pursuit eye movements in goldfish (Carassius auratus). Vision Res., 12, 673–88.

    Google Scholar 

  • Easter, S.S., Johns, P.R. and Baumann, L.R. (1977) Growth of the adult goldfish eye - I: Optics. Vision Res., 17, 469–77.

    Google Scholar 

  • Fernald, R.D. and Wright, S.E. (1985) Growth of the visual system in the African cichlid fish, Haplochromis burtoni - optics. Vision Res., 25, 155–61.

    Google Scholar 

  • Forward, R.B., jun. and Waterman, T.H. (1973) Evidence for e-vector and light intensity pattern discrimination by the teleost Dermogenys. J. Comp. Physiol, A, 87, 187–202.

    Google Scholar 

  • Forward, R.B., jun., Horch, K.W. and Waterman, T.H. (1972) Visual orientation at the water surface by the teleost Zenarchopterus. Biol Bull Mar. Biol Lab., Woods Hole, 143, 112–26.

    Google Scholar 

  • Fukurotani, K. and Hashimoto, Y. (1984) A new type of S-potential in the retina of cyprinid fish: the tetraphasic spectral response. Invest. Ophthalmol Vis. Sci., 24 (Supp.), 118.

    Google Scholar 

  • Gibson, R.M. (1983) Visual abilities and foraging behaviour of predatory fish. Trends Neurosci., 6, 198–9.

    Google Scholar 

  • Glass, C.W., War die, C.S. and Mojsiewicz, W.R. (1986) A light intensity threshold for schooling in the Atlantic mackerel, Scomber scombrus. J. Fish Biol., 29 ( Supp. A), 71–81.

    Google Scholar 

  • Glezer, V.D., Leushina, L.I., Nevskaya, A.A. and Prazdnikova, N.V. (1974) Studies on visual pattern recognition in man and animals. Vision Res., 14, 555–84.

    Google Scholar 

  • Graber, V. (1885) Ãœber die Helligkeits- und Farbenempfindlichkeit einiger Meerthiere. Sber. Akad. Wiss. Abt. Physiol., Wien, 91, 129–50.

    Google Scholar 

  • Graf, V.A. (1979) Four spectral mechanisms in the pigeon (Columbia livia), in Neural Mechanisms of Behaviour in Pigeon (eds A.M. Granada and J.H. Maxwell ), Plenum Press, New York, pp. 129–44.

    Google Scholar 

  • Gramoni, R. and Ali, M.A. (1970) L’Electrorétinogramme et sa fréquence de fusion chez Amia calva. Rev. Can. Biol., 29, 353–63.

    Google Scholar 

  • Gruber, S.H. (1967) A behavioural measurement of dark adaptation in the lemon shark, Negaprion brevirostris, in Sharks, Skates and Rays (eds P.W. Gilbert, R.F. Mathewson and D.P. Rail ), Johns Hopkins University Press, Baltimore, MD, pp. 479–90.

    Google Scholar 

  • Gruber, S.H. (1975) Duplex vision in elasmobranchs: histological, electrophysiological and psychophysical evidence, in Vision in Fishes: New Approaches in Research (ed. M.A. Ali ), Plenum Press, New York, London, pp. 525–40.

    Google Scholar 

  • Grundfest, H. (1932a) The sensibility of the sun-fish, Lepomis, to monochromatic radiation of low intensities. J. Gen. Physiol., 15, 307–28.

    Google Scholar 

  • Grundfest, H. (1932b) The spectral sensibility of the sun-fish as evidence for a double visual system. J. Gen. Physiol., 15, 507–24.

    Google Scholar 

  • Hairston, N.G., Kao, T.L. and Easter, S.S. (1982) Fish vision and the detection of planktonic prey. Nature, Lond., 218, 1240–42.

    Google Scholar 

  • Hamburger, V. (1926) Versuche über Komplimentar-farben bei Ellritzen (Phoxinus laevis). Z. vergi. Physiol., 4, 286–304.

    Google Scholar 

  • Hanyu, I. and Ali, M.A. (1963) Flicker fusion frequency of ERG in light-adapted goldfish at various temperatures. Science, N.Y., 140, 662–3.

    Google Scholar 

  • Hanyu, I. and Ali, M.A. (1964) Electroretinogram and its flicker fusion frequency at different temperatures in light adapted salmon (Salmo salar). J. Cell. Comp. Physiol., 63, 309–21.

    Google Scholar 

  • Harden-Jones, F.R. (1956) The behaviour of minnows in relation to light intensity. J. Exp. Biol., 33, 271–81.

    Google Scholar 

  • Harden-Jones, F.R. (1963) The reaction of fish to moving backgrounds. J. Exp. Biol., 40, 437–46.

    Google Scholar 

  • Harosi, F.I. (1985) Ultraviolet- and violet absorbing vertebrate visual pigments: dichroic and bleaching properties, in The Visual System (eds A. Fein and J.S. Levine ), Alan R. Liss Inc., New York, pp. 41–55.

    Google Scholar 

  • Harosi, F.I. and Fukurotani, K. (1986) Correlation between cone absorbance and horizontal cell response from 300 to 700 nm in fish. Invest. Ophthalmol. Vis. Sci., 27, 192.

    Google Scholar 

  • Harosi, F.I. and Hashimoto, Y. (1983) Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. Science, N.Y., 222, 1021–3.

    Google Scholar 

  • Hart, W.M. (1987) The temporal responsiveness of vision, in Adler’s Physiology of the Eye: Clinical Applications (eds R.A. Moses and W.M. Hart ), C.V. Mosby Co., St Louis, Washington, Toronto, pp. 429–57.

    Google Scholar 

  • Hawryshyn, C.W. (1982) Studies of animal color vision: comments on some important theoretical considerations. Can. J. Zool., 60, 2968–70.

    Google Scholar 

  • Hawryshyn, C.W. (1984) Ultraviolet photoreception in fish, PhD thesis, University of Waterloo, Canada.

    Google Scholar 

  • Hawryshyn, C.W. and Beauchamp, R.D. (1982) Aberrant high blue sensitivity in goldfish. Invest. Ophthalmol. Vis. Sci., 22 (Supp.), 282.

    Google Scholar 

  • Hawryshyn, C.W. and Beauchamp, R. (1985) Ultraviolet photosensitivity in goldfish: an independent UV retinal mechanism. Vision Res., 25, 11–20.

    Google Scholar 

  • Hawryshyn, C.W. and Harosi, F.I. (1987) Cellular basis of ultraviolet photoreception in carp (Cyprinus carpio). Invest. Ophthalmol. Vis. Sci., 28 (Supp.), 343.

    Google Scholar 

  • Hawryshyn, C.W. and McFarland, W.N. (1987) Cone photoreceptor mechanisms and the detection of polarised light in fish. J. Comp. Physiol., A, 160, 459–65.

    Google Scholar 

  • Hawryshyn, C.W., Chou, B.R. and Beauchamp, R.D. (1985) Ultraviolet transmission by the ocular media of goldfish: implications for ultraviolet sensitivity in fishes. Can. J. Zool., 63, 1244–51.

    Google Scholar 

  • Hawryshyn, C.W., Arnold, M.G., Chaisson, D.J. and Martin, P.C. (1987) Developmental changes in ultraviolet photosensitivity in rainbow trout. Soc. Neurosci. Abstr., 13, 1298.

    Google Scholar 

  • Hawryshyn, C.W., Arnold, M.G., Chaisson, D.J. and Martin, P.C. (1989a) The ontogeny of ultraviolet photosensitivity in rainbow trout (Salmo gairdneri). Visual Neurosci., 2 (3), 247–54.

    Google Scholar 

  • Hawryshyn, C.W., Arnold, M.G., Chaisson, D.J. and Martin, P.C. (1989a) The ontogeny of ultraviolet photosensitivity in rainbow trout (Salmo gairdneri). Visual Neurosci., 2 (3), 247–54.

    Google Scholar 

  • Hawryshyn, C.W., Arnold, M.G., Chaisson, D.J. and Martin, P.C. (1989a) The ontogeny of ultraviolet photosensitivity in rainbow trout (Salmo gairdneri). Visual Neurosci., 2 (3), 247–54.

    Google Scholar 

  • Hecht, S., Shlaer, S. and Pirenne, M.H. (1942) Energy, quanta and vision. J. Gen. Physiol., 25, 819–40.

    Google Scholar 

  • Helmholtz, H. von (1866) Handbuch der physiologischen Optik. Voss, Hamburg, Leipzig (English translation by J.P.C. Southall - Physiological Optics. Vols 1, 2 and 3, Optical Society of America, Rochester, New York ).

    Google Scholar 

  • Hemmings, C.C. (1966) Factors influencing the visibility of objects underwater, in Light as an Ecological Factor (eds R. Bainbridge, G.C. Evans and O. Rackham ), Blackwell, Oxford, pp. 359–74.

    Google Scholar 

  • Hemmings, C.C. (1975) The visibility of objects underwater, in Light as an Ecological Factor II (eds G.C. Evans, R. Bainbridge and O. Rackham ), Blackwell, Oxford, pp. 543–5.

    Google Scholar 

  • Herter, K. (1929) Dressurversuche an Fischen. Z. vergl. Physiol., 10, 688 - 711.

    Google Scholar 

  • Herter, K. (1930) Weitere Dressurversuche an Fischen. Z. vergl. Physiol., 11, 730–48.

    Google Scholar 

  • Herter, K. (1953) Die Fischdressuren und ihre sinnesphysiologischen Grundlagen, Akadamischer Verlag, Berlin.

    Google Scholar 

  • Hester, F.J. (1968) Visual contrast thresholds of the goldfish (Carassius auratus). Vision Res., 8, 1315–35.

    Google Scholar 

  • Himstedt, W., Helas, A. and Somer, T.J. (1981) Projections of color coding retinal neurons in urodele amphibians. Brain Behav. Evol., 18, 19–32.

    Google Scholar 

  • Hinde, R.A. (1970) Animal Behaviour: a Synthesis of Ethology and Comparative Psychology, McGraw-Hill, Tokyo.

    Google Scholar 

  • Hinshaw, J.M. (1985) Effects of illumination and prey contrast on survival and growth. Trans. Am. Fish. Soc., 114, 540–45.

    Google Scholar 

  • Hodos, W. and Yolen, N.M. (1976) Behavioural correlates of tectal compression in goldfish II. Visual acuity. Brain Behav. Evol., 13, 468–74.

    Google Scholar 

  • Holst, E. von (1935) Ãœber den Lichtrückenreflex bei Fischen. Pubbl. Staz. Zool. Napoli, 15, 143–58.

    Google Scholar 

  • Holst, E. von, (1950) Quantitative Messung von Stimmungen im Verhalten der Fische, in SEB Symposium 4 - Physiological Mechanisms in Animal Behaviour, Cambridge University Press, Cambridge, pp. 143–72.

    Google Scholar 

  • Holtzman, J.D., Sidtis, J.J., Volpe, B.T., Wilson, D.H. and Gazzaniga, M.S. (1981) Dissociation of spatial information for stimulus localisation and the control of attention. Brain, 104, 861–72.

    Google Scholar 

  • Horner, J.L., Longo, N. and Bitterman, M.E. (1960) A classical conditioning technique for small aquatic animals. Am. J. Psychol., 73, 623–6.

    Google Scholar 

  • Hunter, J.R. (1968) Effects of light on schooling and feeding of jack mackerel, Trachurus symmetricus. J. Fish. Res. Bd Can., 25, 393–407.

    Google Scholar 

  • Ingle, D. (1967) Two visual mechanisms underlying the behaviour of fish. Psychol. Forsch., 31, 44–51.

    Google Scholar 

  • Ingle, D. (1968) Spatial dimensions of vision in fish, in The Central Nervous System and Fish Behaviour (ed. D. Ingle ), University of Chicago Press, Chicago, London, pp. 51–9.

    Google Scholar 

  • Ingle, D. (1971) Vision: the experimental analysis of visual behaviour, in Fish Physiology, Vol. 5, (eds W.S. Hoar and D.J. Randall ), Academic Press, New York, pp. 59–77.

    Google Scholar 

  • Ingle, D.J. (1985) The goldfish as a retinex animal. Science, N.Y., 227, 651–64.

    Google Scholar 

  • Jacobs, G.H. (1982) Comparative Colour Vision, Academic Press, New York.

    Google Scholar 

  • John, K.R. (1964) Illumination, vision, and schooling of Astyanax mexicanus. J. Fish. Res. Bd Can., 21, 1453–73.

    Google Scholar 

  • Johns, P.R. and Easter, S.S. (1977) Growth of the adult goldfish eye. II. Increase in retinal cell number. J. Comp. Neurol., 176, 331–42.

    Google Scholar 

  • Kawamoto, N.Y. and Konishi, J. (1952) The correlation between wavelength and radiant energy affecting phototaxis. Rep. Fac. Fish. Pref. Univ. Mie-Tou, 1, 197–208.

    Google Scholar 

  • Kawamura, G. (1979) Fundamental study on application of the vision of the spotted mackerel, Pneumatophorus tapeinocephalus (Bleeker), to angling techniques-I: importance of vision estimated from brain pattern, visual acuity of retina, and accommodation. Bull. Jap. Soc. Scient. Fish., 45, 281–6.

    Google Scholar 

  • Kawamura, G., Shibata, A. and Yonemori, T. (1981) Response of teleosts to the plane of polarised light as determined by the heart beat rate. Bull. Jap. Soc. Scient. Fish., 47, 727–9.

    Google Scholar 

  • Kawamura, G., Tsuda, R., Kumai, H. and Ohashi, S. (1984a) The visual cell morphology of Pagrus major and its adaptive changes with shift from pelagic to benthic habitats. Bull. Jap. Soc. Scient. Fish., 50, 1975–80.

    Google Scholar 

  • Kawamura, G., Mukai, Y. and Ohta, H. (1984b) Change in the visual threshold with development of rods in Ayu Plecoglossus altivelis. Bull. Jap. Soc. Scient. Fish., 50, 2133.

    Google Scholar 

  • Kleerekoper, H., Matis, J.H., Timms, A.M. and Gensler, P. (1973) Locomotor response of the goldfish to polarized light and its e-vector. J. Comp. Physiol., 86, 27–36.

    Google Scholar 

  • Kobayashi, H. (1962) A comparative study on electroretinogram in fish, with special reference to ecological aspects. J. Shimonoseki Coll. Fish., 11 (3), 17–148.

    Google Scholar 

  • Land, E.H. (1959) Color vision and the natural image. Parts I and II. Proc. Natn. Acad. Sci. USA, 45, 115–29 and 636 - 44.

    Google Scholar 

  • Lang, H.-J. (1967) Ãœber das Lichtruckenverhalten des guppy (Lebistes reticulatus) in farbigen und farblosen Lichtern. Z. vergl. Physiol., 56, 296–340.

    Google Scholar 

  • Levine, J.S. and MacNichol, E.F. (1982) Colour vision in fishes. Sci. Am., 246 (2), 140–49.

    Google Scholar 

  • Lissmann, H.-W. (1933) Die Umwelt des Kampffisches (Betta splendens). Z. vergl. Physiol, 18, 65–111.

    Google Scholar 

  • Loukashkin, A.S. and Grant, N. (1965) Behaviour and natural reactions of the northern anchovy, Engraulis mordax Girard, under the influence of light of different wavelengths and intensities and total darkness. Proc. Calif. Acad. Sci., 31, 631–92.

    Google Scholar 

  • Lyall, A.H. (1957) The growth of the trout retina. Q. J. Microsc. Sci., 98, 101–10.

    Google Scholar 

  • Lyon, E.P. (1904) On rheotropism. I - rheotropism in fishes. Am. J. Physiol., 12, 151–61.

    Google Scholar 

  • Lythgoe, J.N. (1968) Visual pigments and visual range underwater. Vision Res., 8, 997–1011.

    Google Scholar 

  • Lythgoe, J.N. (1975) The ecology, function and phylogeny of iridescent multilayers in fish corneas, in Light as an Ecological Factor II (eds G.C. Evans, R. Bainbridge and O. Rackham ), Blackwell, Oxford, pp. 211–7.

    Google Scholar 

  • Lythgoe, J.N. (1979) The Ecology of Vision, Clarendon Press, Oxford.

    Google Scholar 

  • McCleary, R.A. and Bernstein, J.J. (1959) A unique method for control of brightness cues in study of color vision in fish. Physiol. Zool., 32, 284–92.

    Google Scholar 

  • McFarland, W.N. (1986) Light in the sea - correlations with behaviours of fishes and invertebrates. Am. Zool, 26, 389–401.

    Google Scholar 

  • McFarland, W.N. and Münz, F.W. (1975) The visible spectrum during twilight and its implications to vision, in Light as an Ecological Factor II (eds G.C. Evans, R. Bainbridge and O. Rackham ), Blackwell, London, pp. 249–70.

    Google Scholar 

  • Marc, R.E. and Sperling, H.G. (1976) The chromatic organisation of the goldfish cone mosaic. Vision Res., 16, 1211–24.

    Google Scholar 

  • Martin, G.R. (1982) An owl’s eye: schematic optics and visual performance in Strix aluco L. J. Comp. Physiol., A, 145, 341–9.

    Google Scholar 

  • Martin, G.R. (1983) Schematic eye models in vertebrates, in Progress in Sensory Physiology, Vol. 4 (ed. D. Ottoson ), Springer, Berlin, pp. 43–81.

    Google Scholar 

  • Meesters, A. (1940) Uber die Organisation des Gesichtsfeldes der Fische. Z. Tierpsychol., 4, 84–149.

    Google Scholar 

  • Muller, H. (1952) Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus). Zool. Abt. Allgemeine Zool. Physiol., 63, 276–324.

    Google Scholar 

  • Müntz, W.R.A. (1974) Comparative aspects in behavioural studies of vertebrate vision, in The Eye, Vol. 6 (eds H. Davson and L.T. Graham ), Academic Press, New York, San Francisco, London, pp. 155–226.

    Google Scholar 

  • Muntz, W.R.A. and Cronly-Dillon, J.R. (1966) Colour discrimination in goldfish. Anim. Behav., 14, 351–5.

    Google Scholar 

  • Muntz, W.R.A. and Gwyther, J. (1988) Visual acuity in Octopus pallidus and Octopus australis. J. Exp. Biol., 134, 119–29.

    Google Scholar 

  • Muntz, W.R.A. and Northmore, D.P.M. (1970) Vision and visual pigments in a fish, Scardinius erythrophthalmus (the rudd). Vision Res., 10, 281–98.

    Google Scholar 

  • Muntz, W.R.A. and Northmore, D.P.M. (1971) The independence of the photopic receptor systems underlying visual thresholds in a teleost. Vision Res., 11, 861–76.

    Google Scholar 

  • Muntz, W.R.A. and Northmore, D.P.M. (1973) Scotopic spectral sensitivity in a teleost fish (Scardinius erythrophthalmus) adapted to different day lengths. Vision Res., 13, 245–52.

    Google Scholar 

  • Nakamura, E.L. (1968a) Visual acuity of two tunas, Katsuwonus pelamis and Euthynnus affinis. Copeia, 1, 41–9.

    Google Scholar 

  • Nakamura, E.L. (1986b) Visual acuity of yellowfin tuna, Thunnus albacares. FAO Fish Rep., 62, 463–8.

    Google Scholar 

  • Neave, D.A. (1984) The development of visual acuity in larval plaice (Pleuronectes platessa L.) and turbot (Scophthalmus maximus L.). J. Exp. Mar. Biol. Ecol., 78, 167–75.

    Google Scholar 

  • Neumeyer, C. (1984) On spectral sensitivity in the goldfish: evidence for neural interactions between different ‘cone mechanisms’. Vision Res., 24, 1123–231

    Google Scholar 

  • Neumeyer, C. (1985) An ultraviolet receptor as a fourth receptor type in goldfish colour vision. Naturwissenschaften, 72, 162–3.

    Google Scholar 

  • Neumeyer, C. (1986) Wavelength discrimination in the goldfish.J. Comp. Physiol., A, 158, 203–13.

    Google Scholar 

  • Northmore, D.P.M. (1973) Spectral sensitivity of the rudd (Scardinius erythrophthalmus), DPhil. thesis, University of Sussex, UK.

    Google Scholar 

  • Northmore, D.P.M. (1977) Spatial summation and light adaptation in the goldfish visual system. Nature, Lond., 268, 450–51.

    Google Scholar 

  • Northmore, D.P.M. and Dvorak, C.A. (1979) Contrast sensitivity and acuity of the goldfish. Vision Res., 19, 255–61.

    Google Scholar 

  • Northmore, D.P.M. and Müntz, W.R.A. (1974) Effects of stimulus size on spectral sensitivity in a fish (,Scardinius erythrophthalmus), measured with a classical conditioning paradigm. Vision Res., 14, 503–14.

    Google Scholar 

  • Northmore, D.P.M. and Yager, D. (1975) Psychophysical methods for investigations of vision in fishes, in Vision in Fishes: New Approaches in Research (ed. M.A. Ali ), Plenum, New York, pp. 689–704.

    Google Scholar 

  • Northmore, D.P.M., Volkman, F.C. and Yager, D. (1978) Vision in fishes: colour and pattern, in Behaviour of Fish and Other Aquatic Animals (ed. M.I. Mostofsky ), Academic Press, New York, pp. 79–136.

    Google Scholar 

  • O’Connell, C.P. (1963) The structure of the eye of Sardinops caerulea, Engraulis mordax, and four other pelagic marine teleosts. J. Morph., 113, 287–329.

    Google Scholar 

  • Otis, L.S., Cerf, J.A. and Thorns, G.J. (1957) Conditioned inhibition of respiration and heart rate in the goldfish. Science, N.Y., 126, 263–4.

    Google Scholar 

  • Otten, E. (1981) Vision during growth of a generalised Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Neth. J. Zool., 31, 650–700.

    Google Scholar 

  • Oyama, T. and Jitsumori, M. (1973) A behavioural study of colour mixture in the carp. Vision Res., 13, 2299–308.

    Google Scholar 

  • Pener-Salomon, H. (1972) The optomotor response of the fishes Acanthobrama terrae- sanctae and Barbus canis at different light intensities. Isr. J. Zool., 21, 113–22.

    Google Scholar 

  • Penzlin, H. and Stubbe, M. (1977) Studies on the visual acuity in the goldfish (Carassius auratus L.). Zool. Jb. Abt. Allgemeine Zool. Physiol., 81, 310–26.

    Google Scholar 

  • Perkins, F.T. and Wheeler, R.H. (1931) Configurational learning in the goldfish. Comp. Psychol. Monogr., 7, 1–50.

    Google Scholar 

  • Pfeiffer, W. (1964) Equilibrium orientation in fish, in International Review of General and Experimental Zoology (eds W.J.L. Felts and R.J. Harrison ), Academic Press, New York and London, pp. 77–111.

    Google Scholar 

  • Pirenne, M.H. (1967) Vision and the Eye, Chapman and Hall, London.

    Google Scholar 

  • Pirenne, M.H. and Denton, E.J. (1952) Accuracy and sensitivity of the human eye. Nature, Lond., 170, 1039–42.

    Google Scholar 

  • Powers, M.K. (1978) Light-adapted spectral sensitivity of the goldfish: a reflex measure. Vision Res., 18, 1131–6.

    Google Scholar 

  • Powers, M.K. and Easter, S.S. (1978a) Absolute visual sensitivity of the goldfish. Vision Res., 18, 1137–47.

    Google Scholar 

  • Powers, M.K. and Easter, S.S. (1978b) Wavelength discrimination by the goldfish near absolute visual threshold. Vision Res., 18, 1149–54.

    Google Scholar 

  • Powers, M.K. and Easter, S.S. (1983) Behavioural significance of retinal structure and function in fishes, in Fish Neurobiology (eds R. Davis and G. Northcutt ), University of Michigan Press, Ann Arbor, pp. 377–404.

    Google Scholar 

  • Powers, M.K., Bassi, C.J., Rone, L.A. and Raymond, P.A. (1988) Visual detection by the rod system in goldfish of different sizes. Vision Res., 28, 211–21

    Google Scholar 

  • Protasov, V.R. (1964) Some features of the vision of fishes. Department of Agriculture and Fisheries for Scotland, Marine Laboratory, Aberdeen, translation no. 949 (transí. Z. Kababa), mimeo. (Nekotorye osobennosti zrennia ryb, in Skorosti Dvizheniia I Nekotorye Osobennosti Zreniia Ryb, by D.V. Radakov and V.R. Protasov, Moskva, Akad. Nauk. SSSR, Inst. Morfologii Zhivotmykh (Publishing House, ‘Nauka’) ( 1964 ), pp. 29–48.

    Google Scholar 

  • Rahmann, H., Jeserich, G. and Zeutzius, I. (1979) Ontogeny of visual acuity of rainbow trout under normal conditions and light deprivation. Behaviour, 68, 315–22.

    Google Scholar 

  • Reeves, C.D. (1919) Discrimination of light of different wavelengths by fish. Behav. Monogr., 4, 1–106.

    Google Scholar 

  • Riggs, L.A. (1965) Visual acuity, in Vision and Visual Perception (ed. C.W. Graham ), John Wiley & Sons Inc., New York, pp. 321–49.

    Google Scholar 

  • Rowley, J.B. (1934) Discrimination limens of pattern and size in the goldfish Carassius auratus. Genet. Psychol. Monogr., 15, 245–301.

    Google Scholar 

  • Saxena, A. (1966) Lernkapazität, Gedächtnis und Transpositionsvermögen bei Forellen. Zool. J. Abt. Allgemeine Zool. Physiol. Tiere, 69, 63–94.

    Google Scholar 

  • Schiemenz, F. (1924) Ãœber den Farbensinn der Fische. Z. vergl. Physiol., 1, 175–200.

    Google Scholar 

  • Schneider, C.W. (1968) Electrophysiological analysis of the mechanisms underlying critical flicker frequency. Vision Res., 8, 1235–43.

    Google Scholar 

  • Schulte, A. (1957) Transfer- und Transpositionsversuche mit monokular dressierten Fischen. Z. vergl. Physiol., 39, 432–76.

    Google Scholar 

  • Sgonina, K. (1933) Die Helligkeitsunterscheidungsvermögen der Elritze (Phoxinus laevis). Z. vergl. Physiol., 18, 516–23.

    Google Scholar 

  • Shaw, E. (1961) Minimal light intensity and the dispersal of schooling fish. Bull. Inst. Océanogr. Monaco, 1213, 1–8.

    Google Scholar 

  • Shefner, J.M. and Levine, M.W. (1976) A psychophysical demonstration of goldfish trichromacy. Vision Res., 16, 671–3.

    Google Scholar 

  • Silver, P.H. (1974) Photopic spectral sensitivity of the neon tetra (Paracheirodon innesi (Myers)) found by the use of a dorsal light reaction. Vision Res., 14, 329–34.

    Google Scholar 

  • Sivak, J.G. (1980) Accommodation in vertebrates: a contemporary survey. Curr. Top. Eye Res., 3, 281–330.

    Google Scholar 

  • Snyder, A.W., Bossomaier, T.R.J, and Highes, A. (1986) Optical image quality and the cone mosaic. Science, N.Y., 231, 499–501.

    Google Scholar 

  • Spekreijse, H., Wagner, H.G. and Wolbarsht, M.L. (1972) Spectral and spatial coding of ganglion cell responses in goldfish retina. J. Neurophysiol., 35, 73–86.

    Google Scholar 

  • Sroczynski, S. (1981) Optical system of the eye of the ruff (Acerina cernu L.). Zool. Jb. Abt. Allgemeine Zool. Physiol., 85, 316–42.

    Google Scholar 

  • Stebbins, W.C. (1970) Principles of animal psychophysics, in Animal Psychophysics: the Design and Conduct of Sensory Experiments (ed. W.C. Stebbins), Appleton- Century-Crofts, New York, pp. 1–19.

    Google Scholar 

  • Sutherland, N.S. (1961) The methods and findings of experiments on the visual discrimination of shapes by animals. Q. J. Exp. Psychol.,Monogr. 1, 1–68.

    Google Scholar 

  • Sutherland, N.S. (1968a) Outlines of a theory of visual pattern recognition in animals and man. Proc. R. Soc., B, 171, 297–317.

    Google Scholar 

  • Sutherland, N.S. (1968b) Shape discrimination in the goldfish, in The Central Nervous System and Fish Behaviour (ed. D. Ingle ), University of Chicago Press, Chicago and London, pp. 35–50.

    Google Scholar 

  • Sutherland, N.S. (1969) Shape discrimination in rat, octopus and goldfish: a comparative study. J. Comp. Physiol. Psychol., 67, 160–76.

    Google Scholar 

  • Takahashi, M., Murachi, S. and Karakawa, Y. (1968) Studies on the optomotor reaction of fishes. J. Fac. Fish. Anim. Husb. Hiroshima Univ., 7, 193–205.

    Google Scholar 

  • Tamura, T. (1957) A study of visual perception in fish, especially on resolving power and accommodation. Bull. Jap. Soc. Scient. Fish., 22, 536–57

    Google Scholar 

  • Tamura, T. and Hanyu, I. (1959) The flicker electroretinogram of the carp eye. Bull. Jap. Soc. Scient. Fish., 25, 624–31.

    Google Scholar 

  • Tamura, T. and Wisby, W.J. (1963) The visual sense of pelagic fishes especially the visual axis and accommodation. Bull. Mar. Sci. Gulf Caribb., 13, 433–48.

    Google Scholar 

  • Tavolga, W.N. and Jacobs, D.W. (1971) Scotopic thresholds for monochromatic light in the cichlid fish, Tilapia heudeloti macrocephala. Vision Res., 11, 713–17.

    Google Scholar 

  • Teyssedre, C. and Moller, P. (1982) The optomotor response in weak-electric mormyrid fish: can they see? Z. Tierpsychol., 60, 306–12.

    Google Scholar 

  • Thibault, C. (1949) Action de la lumière blanche et monochromatique sur la posture des poissons téléostéens. Utilisation de cette action pour l’étude de la vision. Archs. Sci. Physiol., 3, 101–24.

    Google Scholar 

  • Thorpe, S.A. (1971) Behavioural measures of spectral sensitivity of the goldfish at different temperatures. Vision Res., 11, 419–33.

    Google Scholar 

  • Thorpe, S.A. (1973) The effects of temperature on the psychophysical and electroretinographic spectral sensitivity of the chromatically-adapted goldfish. Vision Res., 13, 59–72.

    Google Scholar 

  • Tsin, A.T.C, and Beatty, D.D. (1977) Visual pigment changes in rainbow trout in response to temperature. Science, N.Y., 195, 1358–60.

    Google Scholar 

  • Uhlrich, D.J., Essock, E.A. and Lehmkuhle, S. (1981) Cross-species correspondence of spatial contrast sensitivity functions. Behav. Brain Res., 2, 291–9.

    Google Scholar 

  • van Dijk, B.W. and Spekreijse, H. (1984) Linear colour opponency in carp retinal ganglion cells. Vision Res., 24, 1865–72.

    Google Scholar 

  • Verheigen, F.J. (1953) Laboratory experiments with the herring, Clupea harengus. Experientia, 9 (5), 193–4.

    Google Scholar 

  • Vinyard, G.L. and O’Brien, W.J. (1976) Effects of light and turbidity on the reactive distance of the bluegill sunfish (.Lepomis macrochirus). J. Fish. Res. Bd Can., 33, 2845–9.

    Google Scholar 

  • Volkmann, F.C. (1975) Behavioural studies of the discrimination of visual orientation and motion by goldfish, in Vision in Fishes: New Approaches in Research (ed. M.A. Ali ), Plenum Press, New York, pp. 731–41.

    Google Scholar 

  • Volkmann, F.C., Zametkin, A.J. and Stoykovich, C.A. (1974) Visual discrimination of orientation by the goldfish, Carassius auratus. J. Comp. Physiol. Psychol., 86, 875–82.

    Google Scholar 

  • Walls, G.L. (1942) The Vertebrate Eye and its Adaptive Radiation, Hafner, New York.

    Google Scholar 

  • Warner, L.H. (1931) The problem of color vision in fishes. Q. Rev. Biol., 6, 329–48.

    Google Scholar 

  • Waterman, T.H. (1975) Natural polarized light and e-vector discrimination by vertebrates, in Light as an Ecological Factor II (eds G.C. Evans, R. Bainbridge and O. Rackham ), Blackwell, Oxford, pp. 305–35.

    Google Scholar 

  • Waterman, T.H. and Forward, R.B., jun. (1972) Field demonstration of polarotaxis in the fish Zenarchopterus. J. Exp. Zool., 180, 33–54.

    Google Scholar 

  • Weiler, I.J. (1966) Restoration of visual acuity after optic nerve section and regeneration in Astronotus ocellatus. Exp. Neurol., 15, 377–86.

    Google Scholar 

  • Wheeler, T.G. (1982) Colour vision and retinal chromatic information processing in teleost: a review. Brain Res. Rev., 4, 177–235.

    Google Scholar 

  • Wheeler, T.G. (1987) Goldfish spectral sensitivity increase with decreasing tempera-ture. Expl Eye Res., 44, 617–22.

    Google Scholar 

  • Wilkinson, F. (1972) A behavioural measure of grating acuity in the goldfish, MA thesis, Dalhousie University, Halifax, Canada.

    Google Scholar 

  • Wolf, E. and Zerrahn-Wolf, G. (1936) Threshold intensity of illumination and flicker frequency for the eye of the sun-fish. J. Gen. Physiol., 19, 495–502.

    Google Scholar 

  • Yager, D. (1967) Behavioural measures and theoretical analysis of spectral sensitivity and spectral saturation in the goldfish, Carassius auratus. Vision Res., 7, 707–27.

    Google Scholar 

  • Yager, D., Buch, S. and Duncan, I.-A. (1971) Effects of temperature on the visually evoked tectal potential and brightness perception in goldfish. Vision Res., 11, 849–60.

    Google Scholar 

  • Yamanouchi, T. (1956) The visual acuity of the coral fish Microcanthus strigatus (Cuvier and Valenciennes). Pubis Seto Mar. Biol. Lab., V (2), 133–56.

    Google Scholar 

  • Yarczower, M. and Bitterman, M.E. (1965) Stimulus generalization in the goldfish, in Stimulus Generalization (ed. D.J. Mostofsky ), Stanford University Press, Stanford, California, pp. 179–92.

    Google Scholar 

  • Zeki, S. (1980) The representation of colours in the cerebral cortex. Nature, Lond., 284, 412–18.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Douglas, R.H., Hawryshyn, C.W. (1990). Behavioural studies of fish vision: an analysis of visual capabilities. In: Douglas, R., Djamgoz, M. (eds) The Visual System of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0411-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0411-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6672-3

  • Online ISBN: 978-94-009-0411-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics