Skip to main content

The underwater visual environment

  • Chapter
The Visual System of Fish

Abstract

What does the term ‘vision’ mean when applied to non-human animals, and how is the structure and function of a visual system adaptive for the animal that possesses it? These fundamental questions drive the visual ecologist and differentiate her or him from the photoecologist, who is interested in general sensitivity problems. How these questions are attacked will depend on the interests and expertise of the investigator, but ultimately all information regarding the properties of a particular visual system must be referred to the nature of the photic environment, the interactions of targets with the ambient light field, and the relevant visual tasks of the organism. Perhaps nowhere has this approach been more successfully applied than in studies defining the processes driving the evolution of visual systems in aquatic organisms. It follows that the visual ecologist must not only understand the biology, biophysics and perceptual qualities of vision, but must also have a basic understanding of optical physics and those properties of the medium that can influence the visible light field. We shall start with a discussion of basic optical quantities and hydrologic optics as they relate to vision, and then concentrate on three areas that are currently receiving particular attention by ‘fish’ visual ecologists: the near-ultraviolet light field, the polarized light field, and time-dependent changes in the light field produced by oceanic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, M.A. and Kobayashi, H. (1968) Electroretinogram-FFF in albino trout. Experientia, 24, 454–5.

    Article  Google Scholar 

  • Avery, J.A., Bowmaker, J.K., Djamgoz, M.B.A. and Downing, J.E.G. (1983) Ultraviolet sensitive receptors in freshwater fish. J. Physiol., Lond.,334, 23.

    Google Scholar 

  • Baker, K.S. and Smith, R.C. (1982) Spectral irradiance penetration in natural waters, in The role of solar ultraviolet radiation in marine ecosystems (ed. J. Calkins), Plenum Press, New York, pp. 233–46.

    Google Scholar 

  • Bowmaker, J.K. and Kunz, Y.W. (1987) Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (Salmo trutta): age-dependent changes. Vision Res., 27, 2101–8.

    Article  Google Scholar 

  • Bowmaker, J.K., Dartnall, H.J.A. and Herring, P.J. (1988) Longwave-sensitive visual pigments in some deep-sea fishes: segregation of ‘paired’ rhodopsins and porphyropsins. J. Comp. Physiol., A, 163, 685–98.

    Article  Google Scholar 

  • Brines, M.L. and Gould, J.L. (1982) Skylight polarization patterns and animal orientation. J. Exp. Biol., 96, 69–91.

    Google Scholar 

  • Crescitelli, F., McFall-Ngai, M. and Horowitz, J. (1985) The visual pigment sensitivity hypothesis: further evidence from fishes of varying habitats. J. Comp. Physiol., A, 157, 323–33.

    Article  Google Scholar 

  • Dartnall, H.J.A. (1975) Assessing the fitness of visual pigments for their photic environments, in Vision in Fishes (ed. M.A. Ali), Plenum Press, New York, pp. 543–63.

    Google Scholar 

  • Denton, E.J. and Nicol, J.A.C. (1966) A survey of reflectivity in silvery teleosts. J. Mar. Biol. Ass. U.K., 46, 685–722.

    Article  Google Scholar 

  • Dill, P.A. (1971) Perception of polarized light by yearling sockeye salmon (Onchorynchus nerka). J. Fish. Res. Bd Can., 28, 1319–22.

    Article  Google Scholar 

  • Duntley, S.O. (1963) Light in the sea. J. Opt. Soc. Am., 53, 214–33.

    Article  Google Scholar 

  • Fineran, B.A. and Nicol, J.A.C. (1978) Studies on the photoreceptors of Anchoa mitchilli and A. hepsetus (Engraulidae) with particular reference to the cones. Phil. Trans. R. Soc., B, 283, 25–60.

    Article  Google Scholar 

  • Forward, R.B. and Waterman, T.H. (1973) Evidence for e-vector and light intensity pattern discrimination by the teleost Dermogenys. J. Comp. Physiol., 87, 189–202.

    Article  Google Scholar 

  • Frisch, K. von (1948) Gelöste und ungelöste Rätsel der Bienensprache. Naturwissen-schaften, 35, 38–43.

    Article  Google Scholar 

  • Galbraith, M.G. (1967) Size-selective prédation of Daphnia by rainbow trout and yellow perch. Trans. Am. Fish. Soc., 96, 1–10.

    Article  Google Scholar 

  • Gates, D.M. (1980) Biophysical Ecology, Springer-Verlag, New York.

    Google Scholar 

  • Giese, A.C. (1976) Living with the Sun’s Ultraviolet Rays, Plenum Press, New York.

    Google Scholar 

  • Gordon, H.R., Smith, R.C. and Zaneveld, J.R.V. (1979) Introduction to ocean optics. Proc. Soc. Photo-Opt. Instrum. Eng., 208, 14–55.

    Google Scholar 

  • Green, D.G. and Seigal, I.M. (1975) Double branched flicker fusion curves from all- rod skate retina. Science, N.Y., 188, 1120–22.

    Article  Google Scholar 

  • Groot, C. (1965) On the orientation of young sockeye salmon (Oncorhynchus nerka) during their seaward migration out of the lakes. Behaviour (Supp.), 14, 1–198.

    Google Scholar 

  • Hailman, J.P. (1977) Optical Signals, Indiana University Press, Bloomington, Indiana.

    Google Scholar 

  • Hansen, M.J. and Wahl, D.H. (1981) Selection of small Daphnia pulex by yellow perch fry in Oneida Lake, New York. Trans. Am. Fish. Soc., 110, 64–71.

    Article  Google Scholar 

  • Hawryshyn, C.W. and McFarland, W.N. (1987) Cone photoreceptor mechanisms and the detection of polarized light in fish. J. Comp. Physiol., A, 160, 459–65.

    Article  Google Scholar 

  • Henderson, S.T. (1970) Daylight and Its Spectrum, American Elsevier, New York.

    Google Scholar 

  • Ivanoff, A. (1957) Contribution à l’étude des propriétés optiques de l’eau de mer en Bretagne et en Corse, et à la théorie de la polarisation sous-marine. Ann. Géophys., 13, 22–53.

    Google Scholar 

  • Ivanoff, A. (1974) Polarization measurements in the sea, in Optical Aspects of Oceanography (eds N.G. Jerlov and E.S. Nielsen), Academic Press, London, pp. 151–75.

    Google Scholar 

  • Ivanoff, A. and Waterman, T.H. (1958) Factors, mainly depth and wavelength, affecting underwater polarized light. J. Mar. Res., 16, 283–307.

    Google Scholar 

  • Jacobs, G.H. (1981) Comparative Color Vision, Academic Press, New York.

    Google Scholar 

  • Jerlov, N.G. (1976) Marine Optics, Elsevier, Amsterdam.

    Google Scholar 

  • Jerome, J.H., Bukata, R.P. and Bru ton, J.E. (1988) Utilizing the components of vector irradiance to estimate the scalar irradiance in natural waters. Appl. Opt., 27, 4012–18.

    Article  Google Scholar 

  • Kawamura, A., Shigata, A. and Yonemori, T. (1981) Response of teleosts to the plane of polarized light as determined by the heart-beat rate. Bull. Jap. Soc. Scient. Fish., 47, 727–9.

    Google Scholar 

  • Kelly, D.H. (1972) Flicker, in The Handbook of Sensory Physiology, VII/4 (eds D. Jameson and L.M. Hurvich), Springer-Verlag, Berlin, pp. 273–302.

    Google Scholar 

  • Kevan, P.T. (1978) Floral coloration, its colorimetric analysis and significance in anthecology, in Pollination of Flowers by Insects (ed. A.J. Richards), Academic Press, London, pp. 52–78.

    Google Scholar 

  • Kirk, J.T.O. (1983) Light and Photosynthesis in Aquatic Ecosystems, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Kleerekoper, H., Matis, J.H., Timms, A.M. and Gensler, P. (1973) Locomotor response of the goldfish to polarized light and its e-vector. J. Comp. Physiol., 86, 27–36.

    Article  Google Scholar 

  • Kobayashi, H. (1962) A comparative study on electroretinogram in fish with special reference to ecological aspects. J. Shimonoseki Coll. Fish., 11, 17–148.

    Google Scholar 

  • Lee, R.L., jun. (1988) Colorimetric calibration of a video digitizing system: algorithm and applications. Col. Res. Appl., 13, 180–6.

    Article  Google Scholar 

  • Levine, J.S. and MacNichol, E.F., jun. (1979) Visual pigments in teleost fishes: Effects of habitat, microhabitat and behavior on visual system evolution. Sens. Process., 3, 95–131.

    Google Scholar 

  • Loew, E.R. and Lythgoe, J.N. (1978) The ecology of cone pigments in teleost fishes. Vision Res., 18, 715–22.

    Article  Google Scholar 

  • Loew, E.R. and Lythgoe, J.N. (1985) The ecology of colour vision. Endeavour, 14, 170–74.

    Article  Google Scholar 

  • Lythgoe, J.N. (1972) The adaptation of visual pigments to the photic environment, in The Handbook of Sensory Physiology, VII/1 (ed. H.J. A. Dartnall), Springer-Verlag, Berlin, pp. 566–603.

    Google Scholar 

  • Lythgoe, J.N. (1979) The Ecology of Vision, Clarendon Press, Oxford.

    Google Scholar 

  • Lythgoe, J.N. (1984) Visual pigments and environmental light. Vision Res., 24, 1539–50.

    Article  Google Scholar 

  • Lythgoe, J.N. (1987) Light and vision in the aquatic environment, in Sensory Biology of Aquatic Animals (eds J. Atema, R.R. Fay, A.N. Popper and W.N. Tavolga), Springer-Verlag, New York, pp. 57–82.

    Google Scholar 

  • Lythgoe, J.N. and Shand, J. (1984) Action spectra for the iridophore light response in the neon tetra. Photochem. and Photobiol., 40, 551–3.

    Article  Google Scholar 

  • McFarland, W.N. (1986) Light in the sea - correlations with behaviors of fishes and invertebrates. Am. Zool., 26, 389–401.

    Google Scholar 

  • McFarland, W.N. and Loew, E.R. (1983) Wave-produced changes in underwater light and their relations to vision. Env. Biol. Fishes, 8, 173–84.

    Article  Google Scholar 

  • McFarland, W.N. and Münz, F.W. (1975) Part II: The photic environment of clear tropical seas during the day. Vision Res., 15, 1063–70.

    Article  Google Scholar 

  • Menzel, R. (1979) Spectral sensitivity and colour vision in invertebrates, in The Handbook of Sensory Physiology, VII16A (ed. H. Autrum), Springer-Verlag, Berlin, pp. 503–80.

    Google Scholar 

  • Munz, F.W. and McFarland, W.N. (1973) The significance of spectral position in the rhodopsins of tropical marine fishes. Vision Res., 13, 1829–74.

    Article  Google Scholar 

  • Munz, F.W. and McFarland, W.N. (1977) Evolutionary adaptations of fishes to the photic environment, in The Handbook of Sensory Physiology, VII/5 (ed. F. Crescitelli), Springer-Verlag, Berlin, pp. 193–274.

    Google Scholar 

  • Partridge, J.C., Archer, S.N. and Lythgoe, J.N. (1988) Visual pigments in the individual rods of deep-sea fishes. J. Comp. Physiol., A, 162, 543–50.

    Article  Google Scholar 

  • Philpot, W.D. (1987) Radiative transfer in stratified waters: a single-scattering approximation for irradiance. Appl. Opt., 26, 4123–32.

    Article  Google Scholar 

  • Preisendorfer, R.W. (1959) Theoretical proof of the existence of characteristic diffuse light in natural waters. J. Mar. Res., 18, 1–9.

    Google Scholar 

  • Preisendorfer, R.W. (1976) Hydrologie Optics, Volume 1, US Department of Commerce, Washington, DC.

    Google Scholar 

  • Prieur, L. and Sathyendranath, S. (1981) An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter and other particulate materials. Limnol. Oceanogr., 26, 671–88.

    Article  Google Scholar 

  • Protasov, V.R. (1968) Vision and Near Orientation of Fish (Israel Program for Scientific Translations, 1970, Translated by M. Raveh), US Department of Commerce, Washington, DC. 175 pp.

    Google Scholar 

  • Schenck, H. (1957) On the focusing of sunlight by ocean waves. J. Opt. Soc. Am., 47, 653–7.

    Article  Google Scholar 

  • Schwind, R. (1985) Sehen unten und über Wasser, Sehen von Wasser. Naturwissen-schafteni, 72, 343–52.

    Article  Google Scholar 

  • Smith, R.C. and Baker, K.S. (1979) Penetration of UVB and biologically effective dose rates in natural waters. Photochem. Photobiol., 29, 311–23.

    Article  Google Scholar 

  • Spinrad, R.W. and Yentsch, C.M. (1987) Observations on the intra- and interspecific single cell optical variability of marine phytoplankton. Appl. Opt., 26, 357–62.

    Article  Google Scholar 

  • Timofeeva, V.A. (1962) Spatial distribution of the degree of polarization of natural light in the sea. Bull. Acad. Sei. USSR, Geophys. Ser., 12, 1843–51.

    Google Scholar 

  • Timofeeva, V.A. (1974) Optics of turbid waters, in Optical Aspects of Oceanography (eds N.G. Jerlov and E.S. Nielsen), Academic Press, London, pp. 177–219.

    Google Scholar 

  • Tyler, J.E. (1974) Heuristic arguments for the pattern of polarization in deep ocean water, in Planets, Stars and Nebulae Studied with Photometry (ed. T. Gehrels), University of Arizona Press, Tucson, Arizona, pp. 434–43.

    Google Scholar 

  • Wald, G. (1959) Life and light. Scientific American, 201, 92–108.

    Article  Google Scholar 

  • Waterman, T.H. (1954) Polarization patterns in submarine illumination. Science, N.Y., 120, 927–32.

    Article  Google Scholar 

  • Waterman, T.H. (1975) Natural, polarized light and e-vector discrimination by vertebrates, in Light As An Ecological Factor: II (eds G.C. Evans, R. Bainbridge and O. Rackham), Black well, Oxford, pp. 305–55.

    Google Scholar 

  • Waterman, T.H. (1981) Polarization sensitivity, in Handbook of Sensory Physiology, VII/6B (ed. H. Autrum), Springer-Verlag, Berlin, pp. 281–469.

    Google Scholar 

  • Waterman, T.H. (1984) Natural polarized light and vision, in Photoreception and Vision in Invertebrates (ed. M.A. Ali), Plenum Press, New York, pp. 63–114.

    Google Scholar 

  • Waterman, T.H. and Aoki, K. (1974) E-vector sensitivity patterns in the goldfish optic tectum. J. Comp. Physiol., 95, 13–27.

    Article  Google Scholar 

  • Waterman, T.H. and Forward, R.B. (1970) Field evidence for polarized light sensitivity in the fish Zenarchopterus. Nature, Lond., 228, 85–7.

    Article  Google Scholar 

  • Waterman, T.H. and Forward, R.B. (1972) Field demonstration of polarotaxis in the fish Zenarchopterus. J. Exp. Zool., 180, 33–54.

    Article  Google Scholar 

  • Waterman, T.H. and Hashimoto, H. (1974) E-vector discrimination by the goldfish optic tectum. J. Comp. Physiol., 95, 1–12.

    Article  Google Scholar 

  • Waterman, T.H. and Westell, W.E. (1956) Quantitative effect of the sun’s position on submarine light polarization. J. Mar. Res., 15, 149–69.

    Google Scholar 

  • Wellington, W.G. (1974) A special light to steer by. Nat. Hist., 83, 46–53.

    Google Scholar 

  • White, R.H. (1985) Insect visual pigments and color vision, in Comprehensive Insect Physiology, Biochemistry and Pharmacology VI (eds G.A. Kerkut and L.I. Gilbert), Pergamon Press, New York, pp. 431–94.

    Google Scholar 

  • Wyszecki, G. and Stiles, W.S. (1982) Color Science, Wiley, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Loew, E.R., McFarland, W.N. (1990). The underwater visual environment. In: Douglas, R., Djamgoz, M. (eds) The Visual System of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0411-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0411-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6672-3

  • Online ISBN: 978-94-009-0411-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics