Skip to main content

Stability Thresholds for Convection when the Viscosity has a General Form of Temperature Dependence

  • Conference paper
Energy Methods in Continuum Mechanics

Abstract

A nonlinear energy stability analysis is presented for convection when the viscosity may have a general dependence on temperature. Especial attention and numerical calculations are given when the viscosity has the form advocated by Tippelskirch [16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capone, F. & Gentile, M. Nonlinear stability analysis of convection for fluids with exponentially temperature - dependent viscosity. Acta Mech., in the press.

    Google Scholar 

  2. Depassier, M.C. & Spiegel, E.A. Convection with heat flux prescribed on the boundaries of the system. I. The effect of temperature dependence of material properties. Geophys. Astrophys. Fluid Dyn., 21 (1982), 167–188.

    Article  MATH  Google Scholar 

  3. Franchi, F. & Straughan, B. Stability and nonexistence results in the generalized theory of a fluid of second grade. J. Math. Anal. Appl., 180 (1993), 122–137.

    Article  MathSciNet  MATH  Google Scholar 

  4. Gertsberg, V.L. & Sivashinsky, G.I. Large cells in nonlinear Rayleigh–Bénard convection. Prog. Theor. Phys., 66 (1981), 1219–1229.

    Article  MathSciNet  MATH  Google Scholar 

  5. Lide, D.R. Handbook of Chemistry and Physics. 72nd ed. C.R.C. Press, Inc., Boca Raton, Florida (1991–92).

    Google Scholar 

  6. Oliver, D.S. & Booker, J.R. Planform of convection with strongly temperature dependent viscosity. Geophys. Astrophys. Fluid Dyn., 27 (1983), 73–85.

    Article  Google Scholar 

  7. Palm, E., Ellingsen, T. & Gjevik, B. On the occurrence of cellular motion in Bénard convection. J. Fluid Mech. 30, (1967) 651–661.

    Article  MATH  Google Scholar 

  8. Richardson, L. & Straughan, B. A nonlinear stability analysis for convection with temperature-dependent viscosity. Acta Mech., 97 (1993), 41–49.

    Article  MATH  Google Scholar 

  9. Richardson, L. & Straughan, B. Convection with temperature dependent viscosity in a porous medium: nonlinear stability and the Brinkman effect. Atti Accad. Naz. Lincei, (Ser. IX), 4 (1993), 223–230.

    MathSciNet  MATH  Google Scholar 

  10. Selak, R. & Lebon, G. Bènard–Marangoni thermoconvective instability in presence of a temperature–dependent viscosity. J. Phys. II France, 3 (1993), 1185–1199.

    Article  Google Scholar 

  11. Stiles, P.J. Electro-thermal convection in dielectric liquids. Chemical Phys. Letters, 179 (1991), 311–315.

    Article  Google Scholar 

  12. Straughan, B. Stability criteria for convection with large viscosity variations. Acta Mech., 61 (1986), 59–72.

    Article  MATH  Google Scholar 

  13. Straughan, B. The energy method, stability, and nonlinear convection. Vol. 91, Appl. Math. Sci. Ser., Springer-Verlag (1992).

    MATH  Google Scholar 

  14. Straughan, B. Mathematical aspects of penetrative convection. Pitman Res. Notes Math., 288 (1993), Longman, Harlow.

    Google Scholar 

  15. Straughan, B. Energy stability analyses for convection in fluids with temperature dependent viscosity. To appear in Proc. VIIth International Conf. on Waves and Stability in Continuous Media, Bologna, 1993.

    Google Scholar 

  16. Tippelskirch, H. Über Konvektionszellen insbesondere im flüssigen Schwefel. Beiträge zur Physik der Atmosphare, 29, (1956), 37–54.

    Google Scholar 

  17. Torrance, K.E. & Turcotte, D.L. Thermal convection with large viscosity variations. J . Fluid Mech. 47 (1971), 113–125.

    Article  Google Scholar 

  18. White, D.B. The planforms and onset of convection with a temperature–dependent viscosity. J. Fluid Mech. 191 (1988), 247–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this paper

Cite this paper

Straughan, B. (1996). Stability Thresholds for Convection when the Viscosity has a General Form of Temperature Dependence. In: Antontsev, S.N., Díaz, J.I., Shmarev, S.I. (eds) Energy Methods in Continuum Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0337-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0337-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6638-9

  • Online ISBN: 978-94-009-0337-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics