Advertisement

Fixed Points and Attractors for Random Dynamical Systems

Application to stochastic bifurcation theory
  • L. Arnold
  • B. Schmalfuss
Part of the Solid Mechanics and its Applications book series (SMIA, volume 47)

Abstract

We have been pursuing for quite some time the study of systems under randomness within the framework of dynamical systems (i.e. flows of mappings on some state space). For a non-technical introduction and a survey of results see Arnold [2].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, L. Random Dynamical Systems. Preliminary version 2, November 1994Google Scholar
  2. 2.
    Arnold, L. Six lectures on random dynamical systems (CIME Summer School). Report Nr. 314, Institut für Dynamische Systeme, Universität Bremen, August 1994. SubmittedGoogle Scholar
  3. 3.
    Arnold, L. and Boxler, P. Stochastic bifurcation: Instructive examples in dimension one. In Mark Pinsky and Volker Wihstutz, editors, Diffusion processes amd related problems in analysis, Vol. II: Stochastic flows. Progress in Probability, Vol. 27, pages 241–256, Boston Basel Stuttgart, 1992. BirkhäuserGoogle Scholar
  4. 4.
    Arnold, L. and Crauel, H. Iterated function systems and multiplicative ergodic theory. In Mark Pinsky and Volker Wihstutz, editors, Diffusion processes and related problems in analysis, Vol. II: Stochastic flows. Progress in Probability, Vol. 27, pages 283–305, Boston Basel Stuttgart, 1992. BirkhäuserGoogle Scholar
  5. 5.
    Crauel, H. and Flandoli, F. Attractors for random dynamical systems. Prob. Th. Related Fields, 100(2):365–393, 1994MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Crauel, H. and Flandoli, F. Hausdorff dimension of invariant sets for random dynamical systems, submitted, 1994Google Scholar
  7. 7.
    Debussche, A. On the finite dimensionality of random attractors. Technical Report 10. 95, Scuola Normale Superiore di Pisa, 1995. to appear in Stochastic Analysis and ApplicationsGoogle Scholar
  8. 8.
    Gichman, I.I. and Skorochod, A.W. Stochastische Differentialgleichungen. Akademie Verlag, Berlin, 1971zbMATHGoogle Scholar
  9. 9.
    Schmalfuß, B. Backward cocycles and attractors of stochastic differential equations. In V.Reitmann, T. Riedrich, and N. Koksch, editors, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour, pages 185–192, 1992Google Scholar
  10. 10.
    Schmalfuß, B. Stochastische Attraktoren des stochastischen Lorenz-Systems. ZAMM, 74(6):T626-T627, 1994Google Scholar
  11. 11.
    Schmalfuß, B. Attractors for the non autonomous Navier-Stokes equation, in preparation, 1995Google Scholar
  12. 12.
    Schmalfuß, B. Measure attractors and stochastic attractors. Technical Report 332, Universität Bremen, Institut für Dynamische Systeme, 1995Google Scholar
  13. 13.
    Schmalfuß, B. A random fixed point theorem based on Lyapunov exponents. Technical Report 349, Universität Bremen, Institut für Dynamische Systeme, 1995Google Scholar
  14. 14.
    Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, Berlin-Heidelberg-New York, 1988zbMATHGoogle Scholar

Copyright information

© Kluwer Academic publishers 1996

Authors and Affiliations

  • L. Arnold
    • 1
  • B. Schmalfuss
    • 1
  1. 1.Institut für dynamische SystemeUniversität BremenBremenGermany

Personalised recommendations