Skip to main content

Abstract

A theory is developed for the high speed solar wind based on a simple dissipation length characterization of wave heating of the coronal plasma close to the Sun. It is shown that solutions with the correct particle and energy fluxes and with a realistic magnetic field, match the requirements on the density at the base of the corona provided the dissipation length is relatively small (~ 0.25 – 0.5 solar radii). The significant features of these solutions are that the acceleration is rapid, with the sonic point at about 2 solar radii, and the maximum proton temperatures are high, namely 8−10 × 106 K, in agreement with some recent observations. Such efficient dissipation requires any Alfvén waves responsible to have frequencies in the range 0.01 Hz - 10 kHz. This has implications for the nature of the plasma and energy source in the chromospheric network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axford, W.I. (1977) in M.A. Shea et al. (eds.) The Study of Interplanetary Travelling Disturbances, D. Reidel, Dordrecht.

    Google Scholar 

  • Axford, W.I., McKenzie (1993) In Cosmic Winds, University of Arizona Press

    Google Scholar 

  • Bame, S.J., Asbridge, J.R., Feldman, W.C., Gosling, J.T. (1977) J. Geophys. Res. 82, pp. 1487–1492

    Article  ADS  Google Scholar 

  • Ferraro, V.C.A., Plumpton, C. (1966) An Introduction to Magnetofluid Dynamics Clarendon Press, Oxford.

    Google Scholar 

  • Fisher, R.R. and Gutathakurta, M. (1994) Space Sci. Rev. 70, pp. 267–272

    Article  ADS  Google Scholar 

  • Gleeson, L.J., Axford, W.I. (1976) J. Geophys. Res. 81, pp. 3403–3406

    Article  ADS  Google Scholar 

  • Habbal, S.R., Esser, R., Arndt, M.B. Astrophys. J. 413, pp. 435–446

    Google Scholar 

  • Kohl, J.L., Gardner, L.D., Strahan, L., Fisher, R.R. (1995) Space Sci. Rev. 72, 29

    Article  ADS  Google Scholar 

  • Koutchmy, S. (1977) Solar Phys. 51, pp. 399–407

    Article  ADS  Google Scholar 

  • Leer, E., Axford, W.I. (1972) Solar Phys. 23, pp. 238–250

    Article  ADS  Google Scholar 

  • Mariani, F., Neubauer, F.M. (1990) In Schwenn, R, Marsch, E.K. (eds.) Physics of the Inner Heliospheve, Springer Verlag 1, pp. 183–206

    Chapter  Google Scholar 

  • Roberts, D.A. (1989) J. Geophys. Res. 94, pp. 6899–6905

    Article  ADS  Google Scholar 

  • Schwenn, R. (1990) In Schwenn, R., Marsch, E.K. (eds.) Physics of the Inner Heliosphere, Springer Verlag 1, pp. 99–181.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Axford, W.I., McKenzie, J.F. (1996). Acceleration of the High Speed Solar Wind. In: Uchida, Y., Kosugi, T., Hudson, H.S. (eds) Magnetodynamic Phenomena in the Solar Atmosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0315-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0315-9_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6627-3

  • Online ISBN: 978-94-009-0315-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics