Skip to main content

Single-Mode Generation of Quantum Photon States by Excited Single Molecules in a Microcavity Trap

  • Chapter
Microcavities and Photonic Bandgaps: Physics and Applications

Part of the book series: NATO ASI Series ((NSSE,volume 324))

  • 455 Accesses

Abstract

The active microcavity is adopted as an efficient source of non-classical light. By this device, excited by a mode-locked laser at a rate of 100 MHz, single-photons are generated over a single field mode with a nonclassical sub-poissonian distribution. The process of adiabatic recycling within a multi-step Franck-Condon molecular optical-pumping mechanism, characterized in our case by a quantum efficiency very close to one, implies a pump self-regularization process leading to a striking n-squeezing effect. By a replication of the basic single-atom excitation process a beam of quantum photon |n> - states (Fock states) can be created. The new process represents a significant advance in the modern fields of basic quantum-mechanical investigation, quantum communication and quantum cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., and Smolin, J. (1992) Journal of Cryptology 5, 3.

    Article  MATH  Google Scholar 

  2. Ekert, A.K., Rarity, J.G., and Tapster, P.R (1992) Phys. Rev. Lett. 69, 1293.

    Article  ADS  Google Scholar 

  3. Walls, D.F., and Milbum, G.J. (1994) Quantum Optics Springer-Verlag, Berlin.

    MATH  Google Scholar 

  4. Teich, M., Saleh, B., and Perina, J. (1984) J. Opt Soc. Am. B 1, 366.

    Article  ADS  Google Scholar 

  5. Yamamoto, Y. (1991) Phys. Rev. Lett. 66, 2867.

    Article  ADS  Google Scholar 

  6. Kimble, H.J., Dagenais, M., and Mandel, L. (1977) Phys. Rev. Lett. 39,691.

    Article  ADS  Google Scholar 

  7. Dietrich, F., and Walther, H. (1987) Phys. Rev. Lett. 58, 203.

    Article  ADS  Google Scholar 

  8. Baschè, T., Moemer, W.E., Orrit, M., and Talon, H. (1992) Phys. Rev. Lett 69, 1516.

    Article  ADS  Google Scholar 

  9. De Martini, F., Innocenti,G., Jacobovitz, G., and Mataloni, P. (1987) Phys. Rev. Lett. 59, 2955.

    Article  ADS  Google Scholar 

  10. De Martini, F., Marrocco, M., Mataloni, P., Crescentini, L., and Loudon, R. (1991) Phys. Rev. A 43, 2480.

    Article  ADS  Google Scholar 

  11. Marrocco, M., and De Martini, F., in De Martini, F., Denardo, G., and Zeilinger, A.(1994) Quantum Interferometry World Scientific, London.

    Google Scholar 

  12. Svelto, O. (1989) Principles of LasersPlenum Press, New York, Ch. 6.

    Google Scholar 

  13. Aiello, A., De Martini, F., and Mataloni, P. subm. for pubi.

    Google Scholar 

  14. Ritsch, H., Zoller, P., Gardiner, C.W., and Walls, D.F., (1991) Phys. Rev. A 44, 3361.

    Article  ADS  Google Scholar 

  15. Shank, C.V., Ippen, E.P., and Teschke, O. (1977) Chem. Phys. Lett. 45, 291.

    Article  ADS  Google Scholar 

  16. Heitier, W. (1960) The Quantum Theory of Radiation Clarendon, Oxford, Ch.8.

    Google Scholar 

  17. Torrey, H.C. (1949) Phys. Rev. 76,1059.

    Article  ADS  MATH  Google Scholar 

  18. Woodward, P.M. (1953) Probability and Information Theory McGraw Hill, New York.

    MATH  Google Scholar 

  19. Gardiner, C.W. (1991) Quantum Noise Springer, Berlin, Ch. 8.

    MATH  Google Scholar 

  20. Loudon, R. (1983) The Quantum Theory of Light, Clarendon, Oxford, Ch. 5, 7.

    Google Scholar 

  21. Lax, M. (1968) Phys. Rev. 172, 350;

    Article  ADS  Google Scholar 

  22. Mollow, B.R (1969) Phys. Rev. 188, 1969.

    Article  ADS  Google Scholar 

  23. Grangier, P., Roger, G., and Aspect, A. (1986) Europhys. Lett. 1,173.

    Article  ADS  Google Scholar 

  24. De Martini, F., Marrocco, M., and Murra, M. (1990) Phys. Rev. Lett. 65,1853.

    Article  ADS  Google Scholar 

  25. De Martini,F.,and Giangrasso,M.(1995) App. Phys. B 60,S–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

de Martini, F., di Giuseppe, G., Marrocco, M. (1996). Single-Mode Generation of Quantum Photon States by Excited Single Molecules in a Microcavity Trap. In: Rarity, J., Weisbuch, C. (eds) Microcavities and Photonic Bandgaps: Physics and Applications. NATO ASI Series, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0313-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0313-5_46

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6626-6

  • Online ISBN: 978-94-009-0313-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics