Skip to main content

Second Harmonic Generation in a Metal-Semiconductor-Metal Monolithic Cavity

  • Chapter
Microcavities and Photonic Bandgaps: Physics and Applications

Part of the book series: NATO ASI Series ((NSSE,volume 324))

  • 462 Accesses

Abstract

The possibility of doubly resonant middle infrared second harmonic generation (SHG) in a GaAs cavity with two metallic mirrors is studied. The general expressions of the doubly resonant SHG are given both in transmission and in reflection. Both the double resonance condition and the phase matching condition between the two counter propagating second harmonic intracavity waves can be satisfied with a cavity length equal to the coherence length of the non linear process. It is shown theoritically that the double resonance can be maintained with only one tuning parameter, and a SHG cavity enhancement of a few tens of thousands is then possible at 10.6µm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fejer, M. M. (1994) Nonlinear optical frequency conversion, Phys. Today May 1994, 25.

    Article  Google Scholar 

  2. Armstrong, J. A., Bloembergen, N., Ducuing, J., and Pershan, P. S. (1962) Interactions between light waves in a non linear dielectric., Phys. Rev. 127, 1918.

    Article  ADS  Google Scholar 

  3. Ashkin, A., Boyd, G. D., and Dziedzic, J. M. (1966) Resonant optical second harmonic generation and mixing, IEEE J. of Quant. Electron. 2, 09.

    Article  ADS  Google Scholar 

  4. Smith, R. G. (1970) Theory of intracavity optical second-harmonic generation, IEEE J. of Quant. Electron. 6, 215.

    Article  ADS  Google Scholar 

  5. Ferguson, A. I. and Dunn, M. H. (1977) Intracavity second harmonic generation in continuous-wave dye lasers, IEEE J. of Quant. Electron. 13, 751.

    Article  ADS  Google Scholar 

  6. Special issue on Optical Parametric Oscillators (1993) J. Opt. Soc. Am. B 10, 1659

    Article  Google Scholar 

  7. Berquist, J. C., Hemmati, H., and Itano, W. M. (1982) High power second harmonic generation of 257nm radiation in an external ring cavity, Optics Comm. 43, 437.

    Article  ADS  Google Scholar 

  8. Brieger, M., Büsener, H., Hese, A., Moers, F. v., and Renn, A. (1981) Enhancement of single frequency SGH in a passive ring resonator, Opt. Comm. 38, 423.

    Article  ADS  Google Scholar 

  9. Dixon, G. J., Tanner, C. E., and Wieman, C. E. (1989) 432-nm source based on efficient second-harmonic generation of GaAlAs diode-laser radiation in a self-locking external resonant cavity, Opt. Let. 14, 731.

    Article  ADS  Google Scholar 

  10. Kozlovsky, W. J., Nabors, C. D., and Byer, R. L. (1988) Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities, IEEE J. of Quant. Electron. 24, 913.

    Article  ADS  Google Scholar 

  11. Kozlovsky, W. J., Risk, W. P., Lenth, W., Kim, B. G., Bona, G. L., Jaeckel, H., and Webb, D. J. (1994) Blue light generation by resonator-enhanced frequency doubling of an extended-cavity diode laser, Appl. Phys. Lett. 65, 525.

    Article  ADS  Google Scholar 

  12. Persaud, M. A., Tolchard, J. M., and Ferguson, A. I. (1990) Efficient generation of picosecond pulses at 243 nm, IEEE J. of Quant. Electron. 26, 1253.

    Article  ADS  Google Scholar 

  13. Pereira, S. F., Xiao, M., Kimble, H. J., and Hall, J. L. (1988) Generation of squeezed light by intracavity frequency doubling, Phys. Rev. A 38, 4931.

    Article  ADS  Google Scholar 

  14. Sizmann, A., Horowicz, R. J., Wagner, G., and Leuchs, G. (1990) Observation of amplitude squeezing of the up-converted mode in second harmonic generation, Opt. Comm. 80, 138.

    Article  ADS  Google Scholar 

  15. Kürz, P., Paschotta, R., Fielder, K., Sizmann, A., Leuchs, G., and Mlynek, J. (1992) Squeezing by second-harmonic generation in a monolithic resonator, Appl. Phys. B 55, 216.

    Article  ADS  Google Scholar 

  16. Kürz, P., Paschotta, R., Fiedler, K., Sizmann, A., and Mlynek, J. (1993) Europhys. Lett. 24, 449.

    Article  ADS  Google Scholar 

  17. Paschotta, R., Collett, M., Kürz, P., Fiedler, K, Bachor, H. A., and Mlynek, J. (1994) Bright squeezed light from a singly resonant frequency doubler, Phys. Rev. Lett. 72, 3807.

    Article  ADS  Google Scholar 

  18. Kingston, R. H. and McWhorter, A. L. (1965) Electromagnetic mode mixing in nonlinear media, Proc. IEEE 53, 4.

    Article  Google Scholar 

  19. Zimmermann, C., Kallenbach, R., Hänsch, T. W., and Sandberg, J. (1989) Doubly- resonant second-harmonic generation in ß-Barium-Borate, Opt. Comm. 71, 229.

    Article  ADS  Google Scholar 

  20. Zimmermann, C., Hänsch, T. W., Byer, R., O’Brien, S., and Welch, D. (1992) Second harmonic generation at 972 nm using a distributed Bragg reflection semiconductor laser, Appl. Phys. Lett. 61, 2741.

    Article  ADS  Google Scholar 

  21. Yarborough, J. M., Falk, J., and Hitz, C. B. (1971) Enhancement of optical second harmonic generation by utilizing the dispersion of air, Appl. Phys. Lett. 18, 70.

    Article  ADS  Google Scholar 

  22. Berger, V. to be published

    Google Scholar 

  23. Wu, L. A. and Kimble, H. J. (1985) Interference effects in second-harmonic generation within an optical cavity, J. Opt. Soc. Am. B 2, 697.

    Article  ADS  Google Scholar 

  24. Lodenkamper, R., Fejer, M. M., and Harris, J. S. (1991) Surface emitting second harmonic generation in vertical resonator, Electron. Lett. 27, 1882.

    Article  ADS  Google Scholar 

  25. Colville, F. G., Padgett, M. J., and Dunn, M. H. (1994) Continuous-wave, dual cavity, doubly resonant, optical parametric oscillator, Appl. Phys. Lett. 64, 1490.

    Article  ADS  Google Scholar 

  26. Schiller, S. and Byer, R. L. (1993) Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator, J. Opt. Soc. Am. B 10, 1696.

    Article  ADS  Google Scholar 

  27. Schiller, S. (1993) Principles and applications of optical monolithic total-internal- reflection resonators, PhD Thesis, Standford University.

    Google Scholar 

  28. Eckard, R. C., Nabors, C. D., Kozlovsky, W. J., and Byer, R. L. (1991) Optical parametric oscillator frequency tuning and control, J. Opt. Soc. Am. B 8, 646.

    Article  ADS  Google Scholar 

  29. Thomson, D. E., McMullen, J. D., and Anderson, D. B. (1976) Second-Harmonic Generation in GaAs “Stack of Plates” using High Power C02 Laser Radiation, Appl. Phys. Lett. 29, 113.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Berger, V. (1996). Second Harmonic Generation in a Metal-Semiconductor-Metal Monolithic Cavity. In: Rarity, J., Weisbuch, C. (eds) Microcavities and Photonic Bandgaps: Physics and Applications. NATO ASI Series, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0313-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0313-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6626-6

  • Online ISBN: 978-94-009-0313-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics