Skip to main content

Optical Properties of Heterostructures Under an Electric Field

  • Chapter
Devices Based on Low-Dimensional Semiconductor Structures

Part of the book series: NATO ASI Series ((ASHT,volume 14))

  • 182 Accesses

Abstract

The study of the optical properties of heterostructures under an electric field is very important not only for the fundamental knowledge of these structures but also for applications since a voltage is applied onto any device structure, for example to control a switch (electro-optical modulator), generate a light beam (light-emitting diode, laser) or convert a light signal into an electric current (photo-detector).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bastard, G. (1990) Wave Mechanics Applied to Semiconductor Heterostructures, Les Editions de Physique, Les Ulis, and references therein.

    Google Scholar 

  2. For a brief review of electronic properties of heterostructures see : Tronc, P. (1995) Electrons and Holes in Quantum Structures, in M. Balkanski and I. Yanchev (eds.), Fabrication, Properties and Applications of Low-Dimensional Semiconductors, Kluwer Academic Publishers, Dordrecht, pp. 153–172.

    Google Scholar 

  3. Leonelli, R., Tran, C.A., Brebner, J.L., Graham, J.T., Tabti, R., Masut, R.A., and Charbonneau, S. (1993) Optical and Structural Properties of Metalorganic-vapor-phase-epitaxy grown InAs Quantum Wells and Quantum Dots on InP, Phys. Rev. B 48, pp. 11135–11143.

    Article  ADS  Google Scholar 

  4. Violotis, V., Grousson, R., Lavallard, P., Ivchenko, E.L., Kiselev, A.A., and Planel, R. (1994) Absorption Coefficient in Type-II GaAs/AlAs Short-period Superlattices, Phys. Rev. B 49, pp. 2576–2584.

    Article  ADS  Google Scholar 

  5. Romanov, N.G., Baranov, P.G., Mashkov, I.V., Lavallard, P., and Planel, R. (1994) Optically detected magnetic resonance study of the transition from pseudodirect type-II to type-I GaAs/AlAs superlattices, Solid-States Electron. 37, pp. 911–914.

    Article  ADS  Google Scholar 

  6. Li, G.H. (1992) Type-I-type-II transitions in GaAs/AlAs superlattices, in Z.C. Feng (ed.), Semiconductor Interfaces and Microstructures, World Scientific, Singapore, pp. 120–148.

    Chapter  Google Scholar 

  7. Scalbert, D., Cernagora, J., Benoit a la Guillaume, C., Maaref, M., Charfi, F.F., and Planel, R. (1989) Nature of the lowest electron states in short period GaAs/AlAs superlattices of type-II, Solid. State Commun. 70, pp. 945–949.

    Article  ADS  Google Scholar 

  8. Tessier, R., (1992) PhD Thesis, Paris.

    Google Scholar 

  9. Sham, L.J. and Lu Yan-Ten (1989) Theory of electronic structures in superlattices, J. Lumin. 44, pp. 207–221.

    Article  Google Scholar 

  10. Ge, Weikun, Schmidt, W.D., Sturge, M.D., Pfeiffer, L.N. and West, K.W. (1994) Electronic states in GaAs-AlAs short-period superlattices : energy levels and symmetry, J. Lumin. 59, pp. 163–184.

    Article  Google Scholar 

  11. Kitaev, Yu E., Panfilov, A.G., Tronc, P. and Evarestov, R.A. (1995) Electron states symmetries and optical transitions in (GaAs)m(AlAs)n short-period superlattices, in Russian Academy of Sciences (ed.), Nanostructures : Physics and Technology, pp. 130–132.

    Google Scholar 

  12. Jouanin, C., Bertho, D. and Benoit, C. (1993) Orthogonalized-moment method and the study of the electronic structure of heterostructures : Application to CdTe/ZnTe superlattices, Phys. Rev. B 47, pp. 3706–3713.

    Article  ADS  Google Scholar 

  13. Ando, Tsuneya (1985) Hole subband at GaAs/AlGaAs heterojunctions and quantum wells, J. Phys. Soc. Jpn. 54, pp. 1528–1536.

    Article  ADS  Google Scholar 

  14. Masselink, W.T., Chang, Yia-Chung, and Morkoç, H. (1985) Acceptor spectra of AlxGa1-xAs~GaAs quantum wells in external fields : Electric, magnetic and uniaxial stress, Phys. Rev. B 32, pp. 5190–5201.

    Article  ADS  Google Scholar 

  15. Miller, R.C., Kleinman, D.A., Tsang, W.T. and Gossard, A.C. (1982) Extrinsic photoluminescence from GaAs quantum wells, Phys. Rev. B 32, pp. 3871–3877.

    Article  ADS  Google Scholar 

  16. Sham, L.J. and Kohn, W. (1966) One-particle properties of an inhomogeneous interacting electron gas, Phys. Rev. 145, pp. 561–567.

    Article  ADS  Google Scholar 

  17. Stern, F. and Das Sarma, S. (1984) Electron energy levels in GaAs-Ga1-xAlxAs heterojunctions, Phys. Rev. B 30, pp. 840–848.

    Article  ADS  Google Scholar 

  18. Betbeder-Matibet, O., Combescot, M. and Tanguy, C. (1994) Coulomb energy of a quasi-2d electron gas in a quantum well, Phys. Rev. Lett. 72, pp. 4125–4128.

    Article  ADS  Google Scholar 

  19. Antosiewicz, H.A. (1970) Bessel functions of fractional order, in M. Abramowitz and I.A. Stegun (eds.) Handbook of mathematical functions, Dover Publications, New York, pp. 435–478.

    Google Scholar 

  20. Bastard, G., Mendez, E.E., Chang, L.L. and Esaki, L. (1983) Variational calculations on a quantum well in a electric field, Phys. Rev. B 28, pp. 3241–3245.

    Article  ADS  Google Scholar 

  21. Bleuse, J., Bastard, G. and Voisin, P. (1988) Electric-field-induced localization and oscillatory electro-optical properties of semiconductor superlattices, Phys. Rev. Lett. 60, pp. 220–223.

    Article  ADS  Google Scholar 

  22. Dignam, M.M. and Sipe, J.E. (1991) Exciton Stark ladder in semiconductor superlattices, Phys. Rev. B 43, pp. 4097–4112.

    Article  ADS  Google Scholar 

  23. Agullo-Rueda, F., Mendez, E.E. and Hong, J.M. (1989) Quantum coherence in semiconductor superlattices, Phys. Rev. B 40, pp. 1357–1360.

    Article  ADS  Google Scholar 

  24. Tronc, P. (1992) Oscillator strengths of the optical transitions in a semiconductor superlattice under an electric field, J. Phys. I France 2, pp. 487–499.

    Article  Google Scholar 

  25. Tronc, P. (1994) Oscillator strengths of intraband transitions in a semiconductor superlattice in an electric field, Phys. Stat. Sol. (b) 182, pp. 393–389.

    Article  ADS  Google Scholar 

  26. Bastard, G. in ref 1, p. 111.

    Google Scholar 

  27. Chang, Yia-Chung and James, R.B. (1989) Saturation of intersubband transitions in p-type semiconductor quantum wells, Phys. Rev. B 39, pp. 12672–12681.

    Article  ADS  Google Scholar 

  28. Yang, Rui Q., Xu, J.M. and Sweeny, M. (1994) Selection rules of intersubband transitions in conduction-band quantum wells, Phys. Rev. B 50, pp. 7474–7482.

    Article  ADS  Google Scholar 

  29. Wang, G., Demory, R., Tronc, P., Depeyrot, J., Melliti, R., Harmand, J.C., Palmier, J.F., Kochereshko, V.P. and Platonov, A.C. (1995) Observation of the Wannier-Stark ladders associate to the light-hole ground state and to the heavy-hole first excited state in GaInAs/AlGaInAs superlattices, to appear in Nuovo Cimento D.

    Google Scholar 

  30. Tronc, P., Cabanel, C., Palmier, J.F. and Etienne, B. (1990) Stark localization in GaAs-GaAlAs superlattices under a low electric field, Solid. State Commun. 75, pp. 825–829.

    Article  ADS  Google Scholar 

  31. Devaux, F. (1993) PhD Thesis, Paris.

    Google Scholar 

  32. Ferreira, R., Delalande, C., Lin, H.W. Bastard, G., Etienne, B. and Palmier, J.F. (1990) Resonances in the excitonic transfert in biased double quantum wells, Phys. Rev. B 42, pp. 9170–9173.

    Article  ADS  Google Scholar 

  33. Fox, A.M., Miller, D.A.B., Livescu, G., Cunningham, J.E. and Jan, W.Y. (1990) Excitonic effects in coupled quantum wells, Phys. Rev. B 42, pp. 1841–1844.

    Article  ADS  Google Scholar 

  34. Viña, L., Collins, R.T., Mendez, E.E. and Wang, W.I. (1987) Excitonic coupling in GaAs/GaAlAs quantum wells in an electric field, Phys. Rev. Lett. 58, pp. 832–835.

    Article  ADS  Google Scholar 

  35. Meynadier, M.H., Nahory, R.E., Worlock, J.M., Tamargo, M.C. and de Miguel, J.L. (1988) Indirect-direct anticrossing in GaAs-AlAs superlattices induced by an electric field : Evidence of Γ-X mixing, Phys. Rev. Lett. 60, pp. 1338–1341.

    Article  ADS  Google Scholar 

  36. Scheider, H., Grahn, H.T., V. Klitzing, K. and Ploog, K. (1990) Resonance-induced delocalization of electrons in GaAs/AlAs superlattices, Phys. Rev. Lett. 65, pp. 2720–2723.

    Article  ADS  Google Scholar 

  37. Levine, B.F., Gunapala, S.D., Kuo, J.M., Pei, S.S. and Hui, S. (1991) Normal incidence hole intersubband absorption long wavelength GaAs/AlxGa1-xAs quantum well infrared photodetectors, Appl. Phys. Lett. 59, pp. 1864–1866.

    Article  ADS  Google Scholar 

  38. Thibaudeau, L. and Vinter B. (1994) Phonon-assisted carrier capture into a quantum well in an electric field, Appl. Phys. Lett. 65, pp. 2039–2041.

    Article  ADS  Google Scholar 

  39. Bigan, E., Allovon, M., Carre, M., and Voisin, P. (1990) Very low drive voltage optical waveguide modulation in an InGaAs/InAlAs superlattice, Appl. Phys. Lett. 57, pp. 327–329.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tronc, P. (1996). Optical Properties of Heterostructures Under an Electric Field. In: Balkanski, M. (eds) Devices Based on Low-Dimensional Semiconductor Structures. NATO ASI Series, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0289-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0289-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6615-0

  • Online ISBN: 978-94-009-0289-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics