Skip to main content

Matrix Photochemistry Of Transition Metal Complexes: Principles, Applications and Links to Other Methods

  • Chapter
Low Temperature Molecular Spectroscopy

Part of the book series: NATO ASI Series ((ASIC,volume 483))

  • 360 Accesses

Abstract

The importance of matrix isolation in laying fundamental principles of transition metal chemistry is illustrated by the discoveries of metal-alkane and metal-xenon bonds, both made in the 1970’s by matrix photochemistry and now subject to wide ranging research by other methods [1 – 5]. The formation of metal carbonyls with non-transition metals represents another illustration. Matrix isolation experiments demonstrated the possibilities for main group complexes as early as 1972 [6 – 7]. In the last two years, methods have been developed for synthesising such species at ambient temperature: several of them prove stable [8 – 10]. Metal carbonyls are no longer the exclusive domain of transition metals. Matrix isolation continues to play an important role: examples of recent developments include oxidative addition of methane to transition metal complexes, isomerisation of metal ethene complexes and metal carbene complexes. At its most effective, matrix isolation is employed in conjunction with other techniques for studying synthesis, spectroscopy or mechanism. Although carbonyl complexes are far easier to study than other transition metal complexes because of their intense characteristic CO-stretching bands, excellent results have been obtained with no carbonyl groups, e.g. for metal porphyrin dioxygen complexes [11], for reactive metallocenes and for metal ethene complexes. This review will build on the principles of matrix isolation developed in the chapter by Downs (q.v.). It will concentrate on photochemical methods of generating unstable species. The importance of links to techniques other than matrix isolation will be developed in the later sections of the chapter. The reader is referred to reviews elsewhere for more details [12 – 17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perutz, R. N. and Turner, J. J. (1975) Photochemistry of the group VI hexacarbonyls in lowtemperature matrices III. Interaction of the pentacarbonyls with noble gases and other matrices, J. Am. Chem. Soc. 97, 4791–4800.

    Article  CAS  Google Scholar 

  2. Turner, J. J. (1992) Photochemistry involving Cr(CO)5-still some puzzles, in E. Kochanski (ed.), Photoprocesses in TransitionMetal Complexes, Biosystems and Other Molecules, Experimentand Theory, Kluwer Academic Publishers, Dordrecht, pp. 125 – 140.

    Google Scholar 

  3. Brown, C. E., Ishakawa, Y., Hackett, P. A. and Rayner, D. M. (1990) Interactions of alkanes with unsaturated metal centres 2. Complexes of alkanes and fluoroalkanes wih W(CO)5 in the gas phase, J. Am. Chem. Soc. 112, 2530 – 2536.

    Article  CAS  Google Scholar 

  4. Schultz, R. H., Bengali, A. A., Tauber, M. J., Weiller, B. H., Wasserman, E. P., Kyle, K. R., Moore, C. B. and Bergman, R. G. (1994) IR flash kinetic spectroscopy of C-H bond activation by Cp*Rh(CO)2 in liquid rare gases, J. Am. Chem. Soc. 116, 7369 – 7377.

    Article  CAS  Google Scholar 

  5. Wells, J. R. and Weitz E. (1992) Rare gas-metal carbonyl complexes. bonding of rare gas atoms to group VI pentacarbonyls, J. Am. Chem. Soc. 114, 2783 – 2787.

    Article  CAS  Google Scholar 

  6. Weiller, B. H. (1992) Metal carbonyl complexes with xenon and krypton. IR spectra, CO substitution kinetics and bond energies, J. Am. Chem. Soc. 114, 10910 – 10915.

    Article  CAS  Google Scholar 

  7. Kasai, P. H. and Jones, P. M. (1984) Aluminium dicarbonyl. matrix isolation ESR study, J. Am. Chem. Soc. 106, 8018 – 8020.

    Article  CAS  Google Scholar 

  8. Hinchcliffe, A. J., Ogden, J. S., Oswald, D. D. (1972) Infrared spectroscopic evidence for aluminium dicarbonyl, J. Chem. Soc; Chem. Commun. 1338 – 1339.

    Google Scholar 

  9. Willner, H., Bodenbinder, M., Wang, C., Aubke, F. (1994) Carbonyl derivatives of mercury. synthesis, vibrational and +C MAS NMR spectra, J. Chem. Soc. Chem. Commun. 1189 – 1190.

    Google Scholar 

  10. Rack, J. J., Moasser, B., Gargulak, J. D., Gladfelter, W. L., Hoehheimer, H. D. and Strauss, S. H. (1994) Non classical metal carbonyls. [Ag(CO)]+ and [Ag(C02]+ J. Am. Chem. Soc. 116, 10003 – 10014.

    Article  Google Scholar 

  11. Parry, J., Carmona, E., Coles, S. and Hursthouse, M. (1995) Synthesis and single crystal X-ray diffraction study on the first isolable carbonyl complex of an actinide, (C5Me4H)3U(CO), J. Am. Chem. Soc. 117, 2649 – 2650.

    Article  CAS  Google Scholar 

  12. Weseluchabirczynska, A., Paeng, I. R., Shabana, A. A., Nakamoto, K. (1992) Resonance Raman spectra of cocondensation products of Pe(tpp) with ethylene and oxygen/ethylene in low-temperature matrices, New Journal of Chemistry, 16, 563 – 567.

    CAS  Google Scholar 

  13. Almond, M. J. and Downs, A. J. (1989) Spectroscopy of matrix isolated species, Adv. Spectrosc. 17, 1 – 505.

    Google Scholar 

  14. Andrews, L. and Moskovits, M. (eds) (1989) Chemistry and Physics of Matrlx-Isolated Species, North Holland, Amsterdam.

    Google Scholar 

  15. Almond, M. J. and Orrin R. H. (1991) Matrix isolation, Annu. Rep. Prog. Chem. Sect. C. Phys. Chem. 88, 3.

    Article  CAS  Google Scholar 

  16. Peretz, R. N. (1985) Matrix isolation, Annu. Rep. Prog. Chem. Sect. C. Phys. Chem. 82, 157 – 191.

    Google Scholar 

  17. Perutz, R. N. (1985) Photochemical reactions involving matrix-isolated atoms, Chem. Rev. 85, 77 – 96.

    Article  CAS  Google Scholar 

  18. Perutz, R. N. (1985) Photochemistry of small molecules in low-temperature matrices, Chem. Rev. 85, 97 – 128.

    Article  CAS  Google Scholar 

  19. Bellingham, R. K. Graham, J. T. Jones, P. J. Kirby, 1. R. Levason, W. Ogden, J. S. Brisdon, A. K. and Hope, E. G. (1991) Matrix isolation infrared and UV-visible studies of some transition metal pentachlorides and pentabromides, J. Chem. Soc. Dalton Trans. 3387 – 3399.

    Google Scholar 

  20. Breeze, P. A., Burdett, J. K., Turner, J. J. (1981) Charged carbonyls in matrices. An infrared structural characterisation of Ni(C03)-, Cr(CO)5 - and Fe(C04)-, Inorg. Chem. 20, 3369 – 3378.

    Article  CAS  Google Scholar 

  21. Sweany, R. L. (1985) Photolysis of hexacarbonylchromium in hydrogen-containing matrices. evidence of simple adducts of molecular hydrogen, J. Am. Chem. Soc. 107, 2374 – 2379.

    Article  CAS  Google Scholar 

  22. Almond, M. J., Downs, A. J., Perutz, R. N. (1985) Matrix photooxidation of the metal pentacarbonyls M(CO)6 (M =Cr, W) by the isoelectronic molecules carbon dioxide and nitrous oxide, Inorg. Chem. 24, 275 – 281.

    Article  CAS  Google Scholar 

  23. Billups, W. E., Chang, S. C., Hauge, R. H. and Margrave, J. L. (1995) Low temperature reactions of atomic cobalt with CH2N2, CH4 and H2 J. Am. Chem. Soc. 117, 1387 – 1392.

    Article  CAS  Google Scholar 

  24. Schroeder, W., Grinter, R., Schrittenlacher, W., Rotermund, H. H. and Kolb, D. M. (1985) The electronic spectra of matrix isolated nickel atoms. the coexistence of the 303 and 3p4 ground states in Ar, Kr and Xe, J. Chem. Pbys. 82, 1623 – 1630.

    Article  CAS  Google Scholar 

  25. Arthers, S. A. Beattie, I. R. and Jones, P. J. (1984) The infrared spectra of alkali metal hexafluorouranates (V). An example of dependence of molecular geometry on matrix gas, J. Chem. Soc. DaltonTrans. 711 – 713.

    Google Scholar 

  26. Bandy, J. A., Cloke, P. G. N., Cooper, G., Day, J. P., Girling, R. B., Graham, R. G., Green, J. C., Grinter, R. and Perutz R N (1988) Decamethylrhenocene, J. Am. Chem. Soc. 110, 5039 – 5050.

    Article  CAS  Google Scholar 

  27. Hill, J. N. Perutz, R. N. and Tavender, S. (1995) Laser-induced fluorescence of decamethylrhenocene in matrices, J. Phys. Chem. in press.

    Google Scholar 

  28. Perutz, R. N. and Turner, J. J. (1975) Photochemistry of the group VI hexacarbonyls in lowtemperature matrices II. Infrared spectra and structures of 13CO-enriched hexacarbonyls and pentacarbonyls of chromium, molybdenum and tungsten, Inorg. Chem. 14, 262 – 270.

    Article  CAS  Google Scholar 

  29. Burdett, J. K., Grzybowski, J. M., Perutz, R. N., Poliakoff, M., Turner, J. J. and Turner R. F. (1978) Photolysis and spectroscopy with polarised light. key to the photochemistry of Cr(CO)5 and related speciesInorg. Chem. 17, 147 – 154.

    Article  CAS  Google Scholar 

  30. See Perutz, R. N. in [13] for a summary of Mn2(CO)10 photochemistry.

    Google Scholar 

  31. Rest, A. J. Whitwell, I. Graham, W. A. G. Hoyano, J. K. and McMaster, A. D. (1987) Photoactivation of methane by M(η5-C5H5)(CO)2 (M = Rh or Ir, R = H or Me) and Ir(η5-indenyl)(CO)2. a matrix isolation study, J. Chem. Soc., Dalton Trans. 1181 – 1190.

    Google Scholar 

  32. Haynes, A., Poliakoff, M., Turner, J. J., Bender, B. R. and Norton, J. R. (1990) The photochemistry of dinuclear osmium carbonyl complexes. characterisation of OS2(CO)5 using matrix isolation, J. Organomet. Chem. 383, 497 – 519.

    Article  CAS  Google Scholar 

  33. Michl, J. and Thustrup, E. W. (1987) UV and IR linear dichroism. polarised light as a probe of molecular and electronic structure, Acc. Cbem. Res. 20, 192 – 199.

    Article  CAS  Google Scholar 

  34. Knight, L. B. (1986) ESR investigations of molecular cation radicals in neon matrices at 4 K. generation, trapping and ion-neutral reactions, Acc. Chem. Res. 19, 313 – 320.

    Article  CAS  Google Scholar 

  35. Mawby, R. J., Perutz, R. N. and Whittlesey, M. K. (1995), Matrix photochemistry of Ru(CO)3(PMe3)2. formation of Ru(CO)2(PMe3)2…S (S = Ar, CH4, Xe), Organometallics 14, 3268 – 3274.

    Article  CAS  Google Scholar 

  36. Thompson, C. A. and Andrews, L (1994) Noble gas complexes with BeO. infrared spectra of NG-BeO (NG = Ar, Kr, Xe), J. Am. Chem. Soc. 116, 423 – 424.

    Article  CAS  Google Scholar 

  37. See for instance, Howdle, S. M. Grebenik, P. Peretz, R. N. and Poliakoff, M. (1989) The synthesis and spectroscopic identification of (η5-C5H5)Re(N2)3 and (η5-C5H5)Re(CO)(N2)2 in supercritical xenon at room temperature and in N2 matrices, J. Chem. Soc. Chem. Commun. 1517 – 1519.

    Google Scholar 

  38. Crabtree, R. H. (1995) Aspects of methane chemistry, Chem. Rev. 95, 987 – 1007.

    Article  CAS  Google Scholar 

  39. Bloyce, P. E., Rest, A. J. and Whitwell, I. (1990) Photochemistry of Ir(η5-C5H5)(CO)(H)2 in frozen gas matrices at ca. 12 K. Infrared evidence relating to C-H activation, J. Chem. Soc. Dalton Trans. 813 – 821.

    Google Scholar 

  40. Haddleton, D. M., McCamley, A. and Perutz, R. N. (1988) Matrix photochemistry of (η5-Scyclopentadienyl) bis(ethene)rhodium, J. Am. Chem. Soc. 110, 1810 – 1817.

    Article  CAS  Google Scholar 

  41. Sweany, R. L. and Moriz, A. (1989) Photolysis of Cr(CO)5NH3 in hydrogen-containing matrices. characterisation of an H-H stretching vibration in matrices, J. Am. Chem. Soc. 111, 3577 – 3583.

    Article  CAS  Google Scholar 

  42. Partridge, M. G. McCamley, A. and Perutz R. N. (1994) Photochemical generation of 16-electron [Rh(η5-C5H5)(PMe3)] and [Ir(η5-C5H5)(PMe3)] in low temperature matrices. evidence for methane activation, J. Chem. Soc. Dalton Trans. 3519 – 3526.

    Google Scholar 

  43. Campen, A.K. Narayanaswamy, R. Rest, A. J. (1990) Photochemistry of Mn(C7H7CO)(CO)5 and Re(C7H7XCO)5 in frozen gas matrices at ca. 12 K, J. Chem. Soc. Dalton Trans. 823 – 832.

    Google Scholar 

  44. Hill, J. N., Perutz, R. N. and Rooney, A. D. (1995) Laser-induced fluroescence of rhenocene in low temperature matrices. selective excitation and emission, J. Phys. Chem. 99, 531 – 537.

    Article  CAS  Google Scholar 

  45. Gordon, C. M., Feltham, R. D. and Turner, J. J. (1991) Matrix photochemistry of CpRu(CO)2(N02). isomerisation, CO loss and oxygen transfer, J. Phys. Chem. 95, 2889 – 2894.

    Article  CAS  Google Scholar 

  46. McCamley, A., Perutz, R. N., Stahl, S. and Werner, H. (1989) Inter and intramolecular photochemical C-H activation in matrices and in solution with (η6-arene)(carbonyl)(osmium) complexes, Ang. Chem. Int. Ed 28, 1690 – 1692

    Article  Google Scholar 

  47. Brough, S. A. Hall, C. McCamley, A. Perutz, R. N. Stahl, S. Wecker, U. and Werner, H. (1995) Photochemistry of Os(η6-arene) complexes in low-temperature matrices. an IR study of C-H bond activation, J. Organomet. Chem.; in press.

    Google Scholar 

  48. Astley, S. T., Churton, M. P. V., Hitam, R. B. and Rest, A J. (1990) Comparative photochemistry of some tricarbonyl (11 4-polyene)iron complexes in frozen gas matrices at ca. 12 K, J. Chem. Soc. DaltonTrans. 3243 – 3253.

    Google Scholar 

  49. Grevels, F. W., Jacke, J., Klotzbücher, W. E., Schaffner, K., Hooker, R. H. and Rest, A. J. (1990) The photochemistry of M(CO)44- norbornadiene) complexes of group 6 transition metals (M = Cr, Mo, W) in low-temperature matrices, J. Organomet. Chem. 382, 201 – 224.

    Article  CAS  Google Scholar 

  50. Bell, T. W., Haddleton, D. M., McCamley, A., Partridge, M. G., Perutz, R. N. and Willner, H. (1990) Photochemical isomerisation of metal ethene to metal vinyl hydride complexes, J. Am. Chem. Soc. 112, 9212 – 9226.

    Article  CAS  Google Scholar 

  51. Bell, T. W., Brough, S. A., Partridge, M. G., Perutz, R. N. and Rooney, A. D. (1993), Competition between intramolecular and intermolecular C-H activation in iridium ethene compelxes, Organometallics 12, 2933 – 2941.

    Article  CAS  Google Scholar 

  52. Belt, S. T., Helliwell, M., Jones, W. D., Partridge, M. G. and Perutz, R. N. (1993) η2-Coordinationand C-F activation of hexafluorobenzene by cyclopentadienyl rhodium and iridium complexes, J. Am. Chem. Soc. 115, 1429 – 1440.

    Article  CAS  Google Scholar 

  53. Campion, A. K., Mahmoud, K. A., Rest, A. J. and Willis, P. A. (1990) Photochemistry of MO(η5-C5H5)(CO)3CF3 in a variety of frozen gas matrices at ca. 12 K, J. Chem. Soc. Dalton Trans, 2817 – 2823.

    Google Scholar 

  54. Barnhart, T. M. and McMahon, R. J. (1992) Spectroscopic observation of a thermal C-H bond insertion reaction at 5 K. intramolecular rearrangement of Fe(CO)22-C3H6), J. Am. Chem. Soc. 114, 5434 – 5435

    Article  CAS  Google Scholar 

  55. Barnhart, T. M., Fenske, R. F. and McMahon, R. J. (1992) Isomerism in coordinatively unsaturated Fe(CO)35-ethene) complexes, Inorg. Chem. 31, 2679 – 2681.

    Article  CAS  Google Scholar 

  56. Servaas, P. C., Stufkens, D. J. and Oskam, A. (1990) Matrix photochemistry of the complexes (OC)5M=C(OMe)Ph (M = Cr, W) having close-lying reactive MLCf and LF states, J. Organomet. Chem. 390, 61 – 71.

    Article  CAS  Google Scholar 

  57. Rooney, A. D., McGarvey, J. J. and Gordon, K. C. (1995) Time-resolved Raman spectroscopy and matrix isolation studies of anti-syn photoisomerisation in metal carbonyl carbenes, Organometallics 14, 107 – 111.

    Article  CAS  Google Scholar 

  58. Grebenik, P., Grinter, R. and Perutz, R. N. (1988) Metallocenes as reaction intermediates, Chem. Soc. Res, 453 – 490.

    Google Scholar 

  59. Hill, J. N., Perutz, R. N. and Rooney, A. D. (1995) Laser-induced fluorescence of rhenocene in low temperature matrices. selective excitation and emission, J. Phys. Chem. 99, 531 – 543.

    Article  CAS  Google Scholar 

  60. Hill, J. N., Perutz, R. N. and Rooney, A. D. (1995) Laser-induced fluorescence of molybdenocene and tungstenocene in low-temperature matrices, J. Phys. Chem. 99, 538 – 543.

    Article  CAS  Google Scholar 

  61. Hooker, R. H. Mahmoud, K. A. and Rest, A. J. (1983) Spectroscopic evidence for formation of Fe2(η5-C5H5)(μ-CO)3 on photolysis of [Fe(η5-C5H5 )(CO)2]2in low temprature matrices, J. Chem. Soc; Chem. Commun. 1022 – 1024.

    Google Scholar 

  62. Hepp, A. F., Blake, J. P., Lewis, C. and Wrighton, M. S. (1984) Photochemistry of (η5-C5H5)2Fe2(CO)4 and related complexes in rigid matrices at low temperature. loss of CO from the trans isomer to yield triply CO-bridged species, Organometallics 3, 174 – 177.

    Article  CAS  Google Scholar 

  63. Bloyce, P. E., Campen, A. K., Hooker, R. H., Rest, A. J., Thomas, N. R., Bitterwolf, J. E. and Shade, J. E. (1990) Photochemistry of some iron and ruthenium (η5-cyclopentadienyl) carbonyl dimers in frozen gas matrices at ca. 12 K, J. Chem. Soc. Dalton Trans 2833 – 2841.

    Google Scholar 

  64. Poliakoff, M. and Turner, J. J. (1995) Organometallic photochemistry in liquified and supercritical noble gas solution, Adv. Spec. 23, 1 – 310.

    Google Scholar 

  65. Upmacis, R. K., Poliakoff, M. and Turner, J. J. (1986) Structure and thermal reactions of dihydrogen complexes. the IR characterisation of M(CO)5(H2) (M = Cr, Mo, W) and cis-Cr(CO)4(H2)2 in liquid xenon solution, J. Am. Chem. Soc. 108, 3645 – 51.

    Article  CAS  Google Scholar 

  66. Duckett, S. B., Haddleton, D. M., Jackson, S. A., Perutz, R. N., Poliakoff, M. and Upmacis, R. K. (1988) Photochemical oxidative addition reactions of (η5-cyclopentadienyl)bis(ethene)rhodium with dihydrogen and trialkylsilanes, Organometallics 7, 1526 – 1532.

    Article  CAS  Google Scholar 

  67. Howdle, S. M., Grebenik, P., Perutz, R. N. and Poliakoff, M. (1989) The synthesis and spectroscopic identification of (η5-C5H5)Re(N2)3 and (η5-C5H5)Re(CO)(N2)2 in supercritical xenon at room temperature and in N2 matrices at 20 K, J. Chem. Soc. Chem. Commun. 1517 – 1519.

    Google Scholar 

  68. Field, L. D., George, A. V. and Messerle, B. A. (1991) Methane activation by an iron phosphine complex in liquid xenon solution, J. Chem. Soc; Chem. Commun. 1339 – 1441.

    Google Scholar 

  69. Whittlesey, M. K., Mawby, R. J., Osman, R., Perutz, R. N., Field, L. D., Wilkinson, M. P. and George, M. W. (1993) Transient and matrix photochemistry of Fe(dmpe)2H2 (dmpe = Me2PCH2CH2PMe2). dynamics of C-H and H-H activation, J. Am. Chem. Soc. 115, 8627 – 8637.

    Article  CAS  Google Scholar 

  70. Moore, B. D., Simpson, M. B., Poliakoff, M. and Turner, J. J. (1984) Fast time-resolved infrared spectroscopy of organometallic intermediates. detection of (η5-C5H5)Fe(CO)2 and (η5-C5H5)Fe(μ-CO)3Fe(η5-C5H5) in room temperature solution, J. Chem. Soc. Chem. Commun. 972 – 974.

    Google Scholar 

  71. Dixon, A. J., George, M. W., Hughes, C., Poliakoff, M. and Turner, J. J. (1992) Photochemical substitution reactions of [CpFe(CO)2]2 (Cp = η5-C5H5) in hydrocarbon and tetrahydrofuran solution at room temperature. a mechanistic study with time-resolved infrared spectroscopy, J. Am. Chem. Soc. 114, 1719 – 1729.

    Article  CAS  Google Scholar 

  72. Vitale, M., Lee, K. K., Hemann, C. F., Hille, R., Gustafson, T. L. and Bursten, B. E. (1995) Resonance Raman studies of [CpFe(CO)2]2 and [Cp*Fe(CO)2]2. a probe of photoreactive states and intermediates, J. Am. Chem. Soc. 117, 2286 – 2296.

    Article  CAS  Google Scholar 

  73. Perutz, R. N. and Turner, J. J. (1975) Photochemistry of the group 6 hexacarbonyls in low-temperature matrices IV. Tetracarbonylmolybdenum and tricarbonylmolybdenum, J. Am. Chem. Soc. 97, 4800 – 4804.

    Article  CAS  Google Scholar 

  74. Ishakawa, Y., Hackett, P. A. and Rayner, D. M. (1988) Excimer laser photolysis of gas-phase W(CO)6, J. Phys. Chem., 92, 3863 – 3869

    Article  Google Scholar 

  75. Ryther, R. J. and Weitz, E. (1992) Diode laser probes of product distribution of coordinatively unsaturated iron carbonyls in the gas phase, J. Pbys. Chem. 96, 2561 – 2567.

    Article  CAS  Google Scholar 

  76. Hall, C., Jones, W. D., Mawby, R. J., Osman, R., Peretz, R. N. and Whittlesey, M. K. (1992), Matrix isolation and transient photochemistry of Ru(dmpe)2H2 (dmpe = Me2PCH2CH2OMe2), J. Am. Chem. Soc. 114, 7425 – 7435.

    Article  CAS  Google Scholar 

  77. Cronin, L., Nicasio, M. C., Perutz, R. N., Peters, R. G., Roddick, D. M. and Whittlesey, M. K. (1995) Laser-flash photolysis and matrix isolation studies of Ru[R2PCH2CH2PR2]2H2 (R = C2H5, C6H5, C2F5). control of oxidative addition rates by phosphine substituents, J. Am. Chem. Soc. in press.

    Google Scholar 

  78. Weiller, B. H., Wasserman, E. P., Moore, C. B. and Bergman, R. G. (1993) Organometallic CO substitution kinetics in liquid xenon by fast time-resolved IR spectroscopy, J. Am. Chem. Soc. 115, 4326 – 4330.

    Article  CAS  Google Scholar 

  79. Simpson, M. B., Poliakoff, M., Turner, J. J., Maier, W. B. and McLaughlin, J. G. (1983) Cr(CO)5Xe in solution. the first spectroscopic evidence, J. Chem. Soc. Chem. Commun.; 1355 – 1357.

    Google Scholar 

  80. Sun, X. Z., George, M. W. and Poliakoff, M. (1995) Time-resolved infrared spectroscopy in supercritical fluids, Proc. XVII Int. Conf. Photochem. Abstract 3P76.

    Google Scholar 

  81. Symons, M. C. R. and Sweany, R. L (1982) An ESR study of matrix-isolated Mn(CO)5. Formation from HMn(CO)5, Organometallics 1, 834 – 836.

    Article  CAS  Google Scholar 

  82. Howard, J. A., Morton J. R. and Preston, K. F. (1981) The EPR spectrum of Mn(CO)5, Chem. Phys. Lett. 83, 226 – 228.

    Article  CAS  Google Scholar 

  83. Mach, K., Novakova, J. and Rayner, J. B. (1992) ESR spectroscopy of Mn(CO)S radicals generated in gas phase thermolysis of Mn2(CO)lO, J. Organomet. Chem. 439, 341 – 345.

    Article  CAS  Google Scholar 

  84. Fairhurst, S. A., Morton, J. R., Perutz, R. N. and Preston, K. F. (1984) EPR spectra of KrMn(CO)5 and KrFe(CO)5 + in a krypton matrix, Organometallics 3, 1389 – 1391.

    Article  CAS  Google Scholar 

  85. Hynes, R., Preston, K. F., Spring, J. J. and Williams, A J. (1990) EPR study of [W(CO)4P(OMe)3]- radical anion trapped in a single crystal of [PPN][W(CO)4P(OMe)3], J. Chem. Soc. Dalton Trans. 3655 – 3661.

    Google Scholar 

  86. Turner, J. J. (1992) Spectroscopic techniques for organometallic intermediates, in E. Kochanski (ed.), Photoprocesses in Transition Metal Complexes, Biosystems and Other Molecules, Experiment and Theory, KluwerAcademic Publishers, Dordrecht, pp. 113 – 124.

    Google Scholar 

  87. Turner, J. J., George, M. W., Johnson, F. P. A. and Westwell, J. R. (1993) Time-resolved infrared spectroscopy of excited slates of trnnsition metal species, Coord. Chem. Rev. 125, 101 – 114.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Perutz, R.N. (1996). Matrix Photochemistry Of Transition Metal Complexes: Principles, Applications and Links to Other Methods. In: Fausto, R. (eds) Low Temperature Molecular Spectroscopy. NATO ASI Series, vol 483. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0281-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0281-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6611-2

  • Online ISBN: 978-94-009-0281-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics