Skip to main content

Structure and Dynamics Of Van der Waals Complexes

  • Chapter
Low Temperature Molecular Spectroscopy

Part of the book series: NATO ASI Series ((ASIC,volume 483))

Abstract

Novel rules have been discovered which govern the structures of weakly bound molecular complexes. They do not always follow chemical intuition. Complexes with a rare gas atom typically exhibit a T-shaped structure. Linear molecules with an argon atom have been found to obey this rule as well as aromatic molecules for which the rare gas atom is located above the ring plane. This general pattern is also shown in complexes of aromatic molecules with diatomic molecules and even with nonlinear triatomic molecules. Dimers of benzene are no exception to this rule. However rather unexpectedly, CO was found to attach to pyridine in the ring plane in an asymmetric position near nitrogen in the corresponding complex. In all the other investigated complexes of CO with benzene, pyrrole and furan, CO assumes a position above the ring plane.

The formation of a molecular complex from two subunits transforms three translational degrees of freedom and an appropriate number of rotational degrees of freedom into internal vibrational degrees of freedom. The resulting force constants of these Van der Waals vibrations are much weaker than those of stable molecules. They give rise to rather low frequency motions with large amplitudes including internal rotations and inversions. In simple cases, the centrifugal distortion constants carry valuable informations about force constants and vibrational frequencies of the Van der Waals modes. The results obtained for complexes with a rare gas atom will be discussed. The analysis of splittings of rotational transitions provides values for barriers to internal rotations or inversions if adequate quantum-mechanical models can be developed for the intermolecular motions. Some problems during the analysis of complexes mostly formed with aromatic molecules will be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buckingham, A. D., Fowler, P. W., and Hutson, J. M. (1988) Theoretical Studies of van der Waals Molecules and Intermolecular Forces, Chem. Rev., 88, 963–988.

    Article  CAS  Google Scholar 

  2. Maitland, G. C. and Wakeham, W. A. (1978) Direct determinations of intermolecular potentials from gaseous transport coefficients alone. Part I. The method, Mol. Phys., 35, 1429–1442.

    Article  CAS  Google Scholar 

  3. Stone, A. J. and Alderton, M. (1985) Distributed multipole analysis. Methods and applications, Mol. Phys., 56, 1047–1064

    Article  CAS  Google Scholar 

  4. Stone, A. J. (1985) Distributed polaxizabilities, Mol. Phys., 56, 1065–1082

    Article  CAS  Google Scholar 

  5. Buckingham, A. D. and Fowler, P. W. (1985) A model for the geometries of Van der Waals complexes, Can. J. Chem., 63, 2018–2025

    Article  CAS  Google Scholar 

  6. Fowler, P. W. and Stone, A. J. (1987) Induced Dipole Moments in van der Waals Complexes, J. Phys. Chem., 91, 509–511

    Article  CAS  Google Scholar 

  7. Kisiel, Z. (1991) A Simple Model for Predicting Structures of Gas–Phase van der Waals Dimers Containing a Rare Gas Atom, J. Phys. Chem., 95, 7605–7612

    Article  CAS  Google Scholar 

  8. Hutson, J. M. (1992) Vibrational dependence of the anisotropic intermolecular potential of Ar-HC1, J. Phys. Chem., 96, 4237–4247

    Article  CAS  Google Scholar 

  9. Hobza, P., Selzle, H. L., and Schlag, E. W. (1991) Ab initio caclulations on the structure, stabilization and dipole moment of the benzene…Ar complex, J. Chem. Phys., 95, 391–394

    Article  CAS  Google Scholar 

  10. Brupbacher, Th., Lüthi, H. P., and Bauder, A. (1992) An Ab Initio Investigation of the Potential Energy Surface of the Benzene-Neon van der Waals Complex, Chem. Phys. Lett., 195, 482–486

    Article  CAS  Google Scholar 

  11. Hobza, P., Bludský, O., Selzle, H. L., and Schlag, E. W. (1992) Ab initio second- and fourth-order Mø0ller-Plesset study on structure, stabilization energy, and stretching vibration of benzene…X, (X=He,Ne,Ar,Kr,Xe) van der Waals molecules, J. Chem. Phys., 97, 335–340

    Article  CAS  Google Scholar 

  12. Klopper, W., Lüthi, H. P., Brupbacher, Th., and Bauder, A. (1994) Ab initio computations close to the one-particle basis set limit on the weakly bound van der Waals complexes benzene-neon and benzene-argon, J. Chem. Phys., 101, 9747–9754

    Article  CAS  Google Scholar 

  13. Kutzelnigg, W. and Klopper, W. (1991) Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory, J. Phys. Chem., 94, 1985–2001

    Article  CAS  Google Scholar 

  14. Dunning, Jr., T. H. (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys., 90, 1007–1023

    Article  CAS  Google Scholar 

  15. Kendall, R. A., Dunning, Jr., T. H., and Harrison, R. J. (1992) Electron affinities of the first row atoms revisited. Systematic basis sets and wavefunctions, J. Chem. Phys., 96, 6796–6806

    Article  CAS  Google Scholar 

  16. Woon, D. E. and Dunning, Jr., T. H. (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon, J. Chem. Phys., 98, 1358–1371

    Article  CAS  Google Scholar 

  17. Brupbacher, Th., Makarewicz, J., and Bauder, A. (1994) Intermolecular Dynamics of Benzene-Rare Gas Complexes as Derived from Microwave Spectra, J. Chem. Phys., 101, 9736–9746

    Article  CAS  Google Scholar 

  18. Krause, H. and Neusser, H. J. (1993) Dissociation energy of neutral and ionic benzene-noble gas dimers by pulsed field threshold ionization spectroscopy, J. Chem. Phys., 99, 6278–6286

    Article  CAS  Google Scholar 

  19. Brupbacher, Th. and Bauder, A. (1990) Rotational spectrum and dipole moment of the benzene-argon van der Waals complex, Chem. Phys. Lett., 173, 435–438

    Article  CAS  Google Scholar 

  20. Arunan, E., Emilsson, T., and Gutowsky, H. S. (1993) Rotational spectrum and structure of Ne-C6H6-H20, an aromatic sandwich, J. Chem. Phys., 99, 6208–6210

    Article  CAS  Google Scholar 

  21. Arunan, E., Emilsson, T., and Gutowsky, H. S. (1994) Rotational spectra and structures of Rg-C6H6-H20 trimers and the Ne-C6H6 dimer (Rg=Ne, Ar, or Kr), J. Chem. Phys., 101, 861–868

    Article  CAS  Google Scholar 

  22. Klots, T. D., Emilsson, T., and Gutowsky, H. S. (1992) Rotational spectra, structure, Kr-83 nuclear quadrupole coupling constant, and the dipole moment of the Kr-benzene dimer, J. Chem. Phys., 97, 5335–5340

    Article  CAS  Google Scholar 

  23. Weber, Th., von Bargen, A., Riedle, E., and Neusser, H. J. (1990) Rotationally resolved ultraviolet spectrum of the benzene-Ar complex by mass-selected resonance-enhanced two-photon ionization, J. Chem. Phys., 92, 90–96

    Article  CAS  Google Scholar 

  24. Weber, Th., Riedle, E., Neusser, H. J., and Schlag, E. W. (1991) Sub-Doppler UV spectroscopy by resonance-enhanced two-photon ionization: the structure of the benzene-20,22Ne cluster, J. Mol. Spectrosc., 249, 69–80

    CAS  Google Scholar 

  25. Weber, Th., Riedle, E., Neusser, H. J., and Schlag, E. W. (1991) Van der Waals bond length and electronic spectral shifts of the benzene-Kr and benzene-Xe complexes, Chem. Phys. Lett., 183, 77–83

    Article  CAS  Google Scholar 

  26. Legon, A. C. and Lister, D. G. (1993) Van der Waals stretching and bending force constants from the rotational spectrum of argon-l,3,5-trioxane, Chem. Phys. Lett., 204, 139–144

    Article  CAS  Google Scholar 

  27. Menapace, J. A. and Bernstein, E. R. (1987) Calculation of the Vibronic Structure of Solute/Solvent van der Waals Clusters, J. Phys. Chem., 91, 2533–2544

    Article  CAS  Google Scholar 

  28. Makarewicz, J. and Bauder, A. (1995) Ro-vibrational Hamiltonian for molecular complexes, Mol. Phys., 84, 853–878

    Article  CAS  Google Scholar 

  29. Jortner, J., Even, U., Leutwyler, S., and Berkovitch-Yellin, Z. (1983) Large van der Waals ions, J. Chem. Phys., 78, 309–311

    Article  CAS  Google Scholar 

  30. Nowak, R., Menapace, J. A., and Bernstein, E. R. (1988) Benzene clustered with N2, CO2, and CO: Energy levels, vibrational structure, and nucleation, J. Chem. Phys., 89, 1309–1321

    Article  CAS  Google Scholar 

  31. Weber, Th., Smith, A. M., Riedle, E., Neusser, H.J., and Schlag, E. W. (1990) High-resolution UV spectrum of the benzene-N2 van der Waals complex, Chem. Phys. Lett., 175, 79–83

    Article  CAS  Google Scholar 

  32. Ohshima, Y., Kohguchi, H., and Endo, Y. (1991) Pulsed-nozzle Fourier-transform microwave spectroscopy of the benzene-15N2 complex, Chem. Phys. Lett., 184, 21–24

    Article  CAS  Google Scholar 

  33. Brupbacher, Th. and Bauder, A. (1993) Pure rotational spectrum and structure of the benzene-CO van der Waals complex, J. Chem. Phys., 99, 9394–9399

    Article  CAS  Google Scholar 

  34. Bettens, R. P. A., Huber, S. R., and Bauder, A. (1994) A Microwave Study and Centrifugal Distortion Analysis of the Pyrrole-CO Complex, J. Phys. Chem., 98, 4551–4563

    Article  CAS  Google Scholar 

  35. Spycher, R. M., Petitprez, D., Bettens, F. L., and Bauder, A. (1994) Rotational spectra of pyridine-(argon)n, n = 1,2, complexes and their vibrationally averaged structures, J. Phys. Chem., 98, 11863–11869

    Article  CAS  Google Scholar 

  36. Spycher, R. M., Hausherr-Primo, L., Grassi, G., and Bauder, A. (1995) Rotational spectra of isotopic furan-(argon)n, n = 1,2, complexes and their vibrationally averaged structures, J. Mol. Struct., 351, 7–17

    Article  CAS  Google Scholar 

  37. Bettens, F. L., Bettens, R. P. A., and Bauder, A. (1993) inJet Spectroscopy and Molecular Dynamics, edited by J. M. Hollas and D. Phillips (Glasgow: Blackie Academic & Professional), pp. 1–28

    Google Scholar 

  38. Costain, C. C. (1958) Determination of Molecular Structures from Ground State Rotational Constants, J. Chem. Phys., 29, 864–874

    Article  CAS  Google Scholar 

  39. Nösberger, P., Bauder, A., and Günthard, Hs. H. (1973) A Versatile Method for Molecular Structure Determinations from Ground State Rotational Constants, Chem. Phys., 1, 418–425

    Article  Google Scholar 

  40. Heineking, N., Dreizler, H., and Schwarz, R. (1986) Nitrogen and Deuterium Hyper-fine Structure in the Rotational Spectra of Pyridine and [4-D]Pyridine, Z. Naturforsch. Teil A, 141, 1210–1213

    Google Scholar 

  41. Fredin, L., Nelander, B., and Ribbegärd, G. (1975) A Matrix Isolation Study of the Interaction between Water and Carbon Dioxide, Chem. Scr., 7, 11

    CAS  Google Scholar 

  42. Jönsson, B., Karlström, G., and Wennerström, H. (1975) Ab Initio Molecular Orbital Calculations on the Water-Carbon Dioxide System: Molecular Complexes, Chem. Phys. Lett., 30, 58–59

    Article  Google Scholar 

  43. Peterson, K. I. and Klemperer, W. (1984) Structure and internal rotation of H2O- C02, HDO-CO2, and D2O-CO2 van der Waals complexes, J. Chem. Phys., 80, 2439–2445

    Article  CAS  Google Scholar 

  44. Block, P. A., Marshall, M. D., Pedersen, L. G., and Miller, R. E. (1992) Wide amplitude motion in the water-carbon dioxide and water-acetylene complexes, J. Chem. Phys., 96, 7321–7332

    Article  CAS  Google Scholar 

  45. Columberg, G., unpublished

    Google Scholar 

  46. Bauder, A., Mathier, E., Meyer, R., Ribeaud, M., and Günthard, Hs. H. (1968) Theory of rotation and torsion spectra for a semi-rigid model of molecules with an internal rotor of C2V symmetry, Mol. Phys., 15, 597–614

    Article  CAS  Google Scholar 

  47. Makarewicz, J., Ha, T.-K., and Bauder, A. (1993) Potential energy surface and large amplitude motions of the water-carbon dioxide complex, J. Chem. Phys., 99, 3694–3699

    Article  CAS  Google Scholar 

  48. Kumpf, R. A. and Damewood, Jr., J. R. (1989) Interaction of Formaldehyde with Water, J. Phys. Chem., 93, 4478–4486

    Article  CAS  Google Scholar 

  49. Fukunaga, H. and Morokuma, K. (1993) Cluster and Solution Si,ulation of Formaldehyde-Water Complexes and Solvent Effect on Formaldehyde 1 (n, π*) Transition, J. Phys. Chem., 97, 59–69

    Article  CAS  Google Scholar 

  50. Ha, T.-K., Makarewicz, J., and Bauder, A. (1993) Potential energy surface and large amplitude motions of the water-carbon dioxide complex, J. Phys. Chem., 97, 11415–11419

    Article  CAS  Google Scholar 

  51. Nelander, B. (1992) A matrix isolation study of the water-formaldehyde complex. The far-infrared region, Chem. Phys., 159, 281–287

    Article  CAS  Google Scholar 

  52. Meyer, R. (1979) Flexible models for intramolecular motion, a versatile treatment and its application to glyoxal, J. Mol. Spectrosc., 76, 266–333

    Article  CAS  Google Scholar 

  53. Luckhaus, D. and Quack, M. (1992) Spectrum and dynamics of the CH chromophore in CD2HF. I. Vibrational Hamiltonian and analysis of rovibrational spectra, Chem. Phys. Lett., 190, 581–589

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bauder, A. (1996). Structure and Dynamics Of Van der Waals Complexes. In: Fausto, R. (eds) Low Temperature Molecular Spectroscopy. NATO ASI Series, vol 483. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0281-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0281-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6611-2

  • Online ISBN: 978-94-009-0281-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics