Skip to main content

Comparison of brook trout reproductive success and recruitment in an acidic adirondack lake following whole lake liming and watershed liming

  • Chapter
Experimental Watershed Liming Study

Abstract

Limestone applications to the catchment of one tributary to Woods Lake were highly effective in reducing stream acidity and stabilizing seasonal fluctuations in pH. The resulting improvement in stream water quality also led to a dramatic shift in reproductive strategy of the Woods Lake brook trout population. Prior to catchment liming, brook trout in Woods Lake were restricted to spawning on poor quality near shore substrate with limited ground water seepage. Reproductive success was limited by high mortality of eggs and larvae and recruitment from in lake spawning was not successful. Spawning brook trout did not utilize the tributary for spawning prior to watershed liming. Mitigation of acidity in the tributary, by catchment liming, effectively extended the spawning habitat available to the Woods Lake brook trout population and one year following treatment brook trout spawned successfully in the tributary for the first time in 6 years of observation. Significant recruitment of young trout into the lake population occurred from 1991 through 1993, although the absolute number of fish captured was relatively small. In the fall of 1993, four year classes of naturally spawned brook trout were present in the lake. Although reproductive success was enhanced by improving tributary spawning habitat in the Woods Lake basin, self-maintenance of the population may be limited by low recruitment rates of young trout, due to high levels of summer mortality resulting from predation. Mitigation of this constraint would require substantially higher levels of fry production than were observed in Woods Lake and/or enhanced refugia for young trout. The results of this experiment suggest that re-establishment of tributary spawning populations of brook trout may be possible, with future reductions in acidic deposition, in acidic Adirondack lakes with limited in-lake spawning habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barr JF (1973) Feeding biology of the common loon in oligotrophic lakes of the Canadian Shield. Ph.D. Thesis, University of Guelph, Ontario, 192 pp

    Google Scholar 

  • Benson NG (1953) The importance of ground water to trout populations in the Pigeon River, Michigan. Trans. North Amer. Wildl. Conf. 18: 269–281

    Google Scholar 

  • Bukaveckas PA (1988) Effects of calcite treatment on primary producers in acidified Adirondack lakes. I. Response of macrophyte communities. Lake Reserv. Manage. 4: 107–113

    Article  Google Scholar 

  • Carline RF (1980) Features of successful spawning site development for brook trout in Wisconsin ponds. Trans. Amer. Fish. Soc. 109: 453–457

    Article  Google Scholar 

  • Cirmo CP & Driscoll CT (1996) The role of a beaver impoundment in regulating stream chemistry after a watershed calcium carbonate treatment. Biogeochemistry 32: 265–297 (this volume)

    Article  CAS  Google Scholar 

  • Driscoll CT, Ayling WA, Fordham GF & Oliver LM (1989) Chemical response of lakes treated with CaC03 to re acidification. Can. J. Fish, and Aquat. Sci. 46: 258–267

    Article  CAS  Google Scholar 

  • Driscoll CT, Cirmo CP, Fahey TJ, Blette VL, Bums DJ, Gubala CP, Newton RM, Raynal DJ, Schofield CL, Yavitt JB & Porcella DB (1996) The experimental watershed liming study (EWLS): Comparison of lake/watershed base neutralization strategies. Biogeochemistry 32: 143–174 (this issue)

    Article  CAS  Google Scholar 

  • Gloss SP, Schofield CL & Spateholts RL (1987) Conditions for re-establishment of brook trout (Salvelinus fontinalis) populations in acidic lakes following base addition. Lake Reserv. Manage. 3: 412–420

    Article  Google Scholar 

  • Gloss SP, Schofield CL, Spateholts RL & Plonski BA (1989) Survival, growth, reproduction, and diet of brook trout (Salvelinus fontinalis) stocked into lakes after liming to mitigate acidity. Can. J. Fish. Aquat. Sci. 46: 277–286

    Article  Google Scholar 

  • Gubala CP, Driscoll CT, Newton RM & Schofield CL (1991) Chemistry of a near-shore lake region during spring snowmelt. Environ. Sci. Technol. 25(12) 2024–2030

    Article  CAS  Google Scholar 

  • Gubala CP, Driscoll CT, Newton RM & Schofield CL (1993) Device for finely resolved sampling of littoral lake regions: Design and operation. Hydrological Processes 7: 99–104

    Article  Google Scholar 

  • Gunn, JM & Noakes LG (1986) Avoidance of low pH and elevated Al concentrations by brook charr (Salvelinus fontinalis) alevins in laboratory tests. Water, Air and Soil Pollution 30: 497–503

    Article  CAS  Google Scholar 

  • Johnson DW & Webster DA (1977) Avoidance of low pH in selection of spawning sites by brook trout (Salvelinus fontinalis ). J. Fish. Res. Board Can. 34: 2215–2218

    Article  CAS  Google Scholar 

  • Kretser W, Gallagher J & Nicollette J (1989) Adirondack lakes study, 1984-1987: An evaluation of fish communities and water chemistry, summary report, Adirondack Lakes Survey Corp., 345 pp, Ray Brook, NY

    Google Scholar 

  • Newton RM, Weintraub J & April R (1987) The relationship between surface water chemistry and geology in the North Branch of the Moose River, Biogeochemistry 3: 163–180

    Article  Google Scholar 

  • Porcella DB (1989) Lake Acidification Mitigation Project (LAMP): an overview of an ecosystem perturbation experiment. Can. J. Fish. Aquat. Sci. 46: 246–248

    Article  Google Scholar 

  • Ricker WE (1975) Computation and interpretation of biological statistics of fish populations. Fish. Res. Bd. Can. Bull. 191. 382 pp

    Google Scholar 

  • Schofield CL, Gloss SP, Plonski B & Spateholts RL (1989) Production and growth efficiency of brook trout (Salvelinus fontinalis) in two Adirondack Mountain (New York) lakes following liming. Can. J. Fish. Aquat. Sci. 46: 333–341

    Article  Google Scholar 

  • Schofield CL, Keleher C & Van Offelen H (1991) Population dynamics of brook trout (Salvelinus fontinalis) during maintenance liming of an acidic lake. Water, Air, and Soil Pollution 59: 41–53

    Article  Google Scholar 

  • Schofield CL (1993) Habitat suitability for brook trout (Salvelinus fontinalis) reproduction in Adirondack lakes. Water Resources Research, 29(4): 875–879

    Article  CAS  Google Scholar 

  • Schofield CL, Josephson D, Keleher C & Gloss SP (1993) Thermal stratification of dilute lakes - An evaluation of regulatory processes and biological effects before and after base addition: Effects on brook trout habitat and growth. U.S. Fish and Wildlife Serv., National Ecology Research Center-Leetown, Keameysville, W.Va. Biological Report 9, 36 pp

    Google Scholar 

  • Staubitz WW & Zarriello PJ (1989) Hydrology of two headwater lakes in the Adirondack Mountains of New York. Can. J. Fish, and Aquat. Sci. 46: 268–276

    Article  Google Scholar 

  • Stauffer TM (1981) Collecting gear for lake trout eggs and fry. Prog. Fish. Cult. 43: 186–193

    Article  Google Scholar 

  • Webster DA (1962) Artificial spawning facilities for brook trout, Salvelinus fontinalis. Trans. Amer. Fish. Soc. 91: 169–174

    Google Scholar 

  • Webster DA & Eriksdottir G (1976) Up welling water as a factor influencing choice of spawning sites by brook trout (Salvelinus fontinalis ). Trans. Amer. Fish. Soc. 105: 416–421

    Article  Google Scholar 

  • Van Offelen HK, Krueger CC, Schofield CL & Keleher C (1994) Survival, Distribution, and Ion Composition in Two Strains of Brook Trout Fry After Exposure to Episodic pH Depressions in an Adirondack Lake. Canadian Journal of Fisheries and Aquatic Sciences 51(4): 792–799

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Charles T. Driscoll

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schofield, C.L., Keleher, C. (1996). Comparison of brook trout reproductive success and recruitment in an acidic adirondack lake following whole lake liming and watershed liming. In: Driscoll, C.T. (eds) Experimental Watershed Liming Study. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0275-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0275-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6608-2

  • Online ISBN: 978-94-009-0275-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics