Skip to main content

Peat and solution chemistry responses to CaCO3 application in wetlands next to Woods Lake, New York

  • Chapter
Experimental Watershed Liming Study

Abstract

We studied the effect of a calcite (CaCO3) treatment on peat and pore water chemistry in poor fen and conifer swamp wetlands next to Woods Lake and its tributaries to evaluate the role of wetlands in an Experimental Watershed Liming Study (EWLS). Peat was characteristically organic rich and nutrient poor, with exchangeable Ca concentrations of < 13 cmolckg-1. We estimated that between 0.4 to 4 Mg CaCO3 ha-1 fell directly on three study sites; however, one year after the treatment the increase in Ca concentration (0–8 cm depth) was equivalent to a CaCO3 dosage of 3 Mg ha-1 with an additional 2–4 Mg ha-1 of undissolved CaCO3 still present, suggesting the peat retained Ca supplied from uplands. Most aspects of peat chemistry including microbial respiration and SO4 reduction did not respond to the treatment.

Peat pore water (5 and 20 cm depths) had a mean pH of 4.82 before treatment with high concentrations of dissolved organic carbon (DOC mean of 790 μmol C/l) and low Ca2+ concentration (mean of 32 μmol/l). The CaCO3 treatment increased concentrations of Ca2+ to a mean of 87 μmol/l and dissolved inorganic carbon (DIC) from 205 to a mean of 411 μmol/l, whereas it decreased monomeric Al concentration from 19 to 10 μmol/l. Otherwise, pore water chemistry showed little response to the treatment, at least within natural spatial and temporal variation of solute concentrations. The results suggest that liming watersheds with the relatively low CaCO3 dosage applied in this study can benefit acidic waters downstream by exporting more Ca and DIC and less monomeric Al, with otherwise little effect on the peat itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RF & Schiff SL (1987) Alkalinity generation and the fate of sulfur in lake sediments. Can. J. Fish. Aquat. Sci. 44 (Suppl 1) 188–193

    Article  CAS  Google Scholar 

  • Andrus RE (1986) Some aspects of Sphagnum ecology. Can. J. Bot. 64: 4416–4426

    Article  Google Scholar 

  • April RH & Newton RM (1985) Influence of geology on lake acidification in the ILWAS watersheds. Water Air Soil Pollut. 26: 373–386

    CAS  Google Scholar 

  • Bak F & Pfennig N (1991) Microbial sulfate reduction in littoral sediment of Lake Constance. FEMS Microbiol. Ecol. 85: 31–42

    Article  CAS  Google Scholar 

  • Barber SA (1984) Liming materials and practices. In: Adams F (Ed) Soil Acidity and Liming, 2nd Edition (pp 171–209). American Society of Agronomy, Madison, Wisconsin

    Google Scholar 

  • Belser LW (1979) Population ecology of autotrophic nitrifying bacteria. Ann. Rev. Microbiol. 33: 309–333

    Article  CAS  Google Scholar 

  • Blancher PJ & McNicol DK (1987) Peatland water chemistry in central Ontario in relation to acid deposition. Water Air Soil Pollut. 35: 217–232

    Article  CAS  Google Scholar 

  • Bohlin E, Hamalainen M & Sunden T (1989) Botanical and chemical characteristics of peat using multivariate methods. Soil Sci. 147: 252–263

    Article  CAS  Google Scholar 

  • Bridgham SD & Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol. Biochem. 24: 1089–1099

    Article  CAS  Google Scholar 

  • Buresh RJ & Patrick WH Jr (1978) Nitrate reduction to ammonium in anaerobic soil. Soil Sci. Soc. Am. J. 42: 913–918

    Article  CAS  Google Scholar 

  • Cirmo CP & Driscoll CT (1996) The impacts of a watershed CaCO3 treatment on stream and wetland biogeochemistry in the Adirondack Mountains. Biogeochemistry 32: 265–297 (this volume)

    Article  CAS  Google Scholar 

  • Condron LM, Tiessen H, Trasar-Cepeda C, Moir JO & Stewart JWB (1993) Effects of liming on organic matter decomposition and phosphorus extractability in an acid humic Ranker soil from northwest Spain. Biol. Fert. Soils 15: 279–284

    Article  CAS  Google Scholar 

  • Cronan CS & DesMeules MR (1985) A comparison of vegeative cover and tree community structure in three forested Adirondack watersheds. Can. J. For. Res. 15: 881–889

    Article  Google Scholar 

  • Cronan CS, Lakshman S & Patterson HH (1992) Effects of disturbance and soil amendments on dissolved organic carbon and organic acidity in red pine forest floors. J. Environ. Qual. 21: 457–463

    Article  CAS  Google Scholar 

  • David MB & Vance GF (1991) Chemical character and origin of organic acids in streams and seepage lakes of central Maine. Biogeochemistry 12: 17–41

    Article  CAS  Google Scholar 

  • Driscoll CT, Baker JP, Bisogni JJ & Schofield CL (1980. Effect of aluminum speciation on fish in dilute acidified waters. Nature (London) 284: 161–164

    Article  CAS  Google Scholar 

  • Driscoll CT and others (1996) The Experimental Watershed Liming Study (EWLS): comparison of lake/watershed base neutralization strategies. Biogeochemistry 32: 143–174 (this volume)

    Article  CAS  Google Scholar 

  • Eleuterius LN (1980) A rapid in situ method of extracting water from tidal marsh soils. Soil Sci. Soc. Am. J. 44: 884–886

    Article  Google Scholar 

  • Geary R & Driscoll CT (1996) Forest/soil solutions: acid-base chemistry and response to calcite treatment. Biogeochemistry 32: 195–220 (this volume)

    Article  CAS  Google Scholar 

  • Goodwin S, Conrad R & Zeikus JG (1988) Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems. Appl. Environ. Microbiol. 54: 590–593

    PubMed  CAS  Google Scholar 

  • Gorham E, Eisenreich SJ, Ford J & Santelmann MV (1985) The chemistry of bog waters. In: Stumm W (Eds) Chemical Processes in Lakes (pp 329–362). John Wiley & Sons, New York

    Google Scholar 

  • Haynes RJ (1984) Lime and phosphate in the soil-plant system. Adv. Agron. 37: 249–315

    Article  CAS  Google Scholar 

  • Helmer EH, Urban NR & Eisenreich SJ (1990) Aluminum geochemistry in peatland waters. Biogeochemistry 9: 247–276

    Article  CAS  Google Scholar 

  • Jeglum JK (1991) Definition of trophic classes in wooded peatlands by means of vegetation types and plant indicators. Ann. bot. Fennici 28: 175–192

    Google Scholar 

  • Jenkins A, Walters D & Donald A (1991) An assessment of terrestrial liming strategies in upland Wales. J. Hydrol. 124: 243–261

    Article  CAS  Google Scholar 

  • Mackun IR, Leopold DJ & Raynal DJ (1994) Short-term responses of wetland vegetation after liming of an Adirondack watershed. Ecol. Applic. 4: 535–543

    Article  Google Scholar 

  • Magnusson T (1993) Carbon dioxide and methane formation in forest mineral and peat soils during aerobic and anaerobic incubations. Soil Biol. Biochem. 25: 877–883

    Article  CAS  Google Scholar 

  • Mattson MD & Likens GE (1992) Redox reactions of organic matter decomposition in a soft water lake. Biogeochemistry 19: 149–172

    Google Scholar 

  • McKnight, D, Thurman EM, Wershaw RL & Hemond H (1985) Biogeochemistry of aquatic substances in Thoreau’s Bog, Concord, Massachusetts. Ecology 66: 1339–1352

    Article  CAS  Google Scholar 

  • Moore PD & Bellamy DJ (1974) Peatlands. Springer-Verlag, New York

    Google Scholar 

  • Newton RM, Weintraub J & April R (1987) The relationship between surface water chemistry and geology in the North Branch of the Moose River. Biogeochemistry 3: 21–35

    Article  CAS  Google Scholar 

  • Nye PH & Amelko AY (1987) Predicting the rate of dissolution of lime in soil. J. Soil Sci. 38: 641–649

    Article  CAS  Google Scholar 

  • Rudd JWM, Kelly CA, St. Louis V, Hesslein RH, Furutani A & Holoka MH (1986) Microbial consumption of nitric and sulfuric acids in acidified north temperate lakes. Limnol. Oceaonogr. 31: 1267–1280

    Article  CAS  Google Scholar 

  • Schiff SL & Anderson RF (1986) Alkalinity production in epilimnetic sediments: Acidic and non-acidic lakes. Water Air Soil Pollut. 31: 941–948

    Article  CAS  Google Scholar 

  • Schuurkes JAAR & Kok CJ (1988) In vitro studies on sulphate reduction and acidification in sediments of shallow soft water lakes. Freshwater Biol. 19: 417–426

    Article  CAS  Google Scholar 

  • Siegel DI (1983) Grounwater and the evolution of patterned mires, Glacial Lake Agassiz Peatlands, northern Minnesota. J. Ecol. 71: 913–921

    Article  Google Scholar 

  • Simmons JA, Yavitt JB & Fahey TJ (1996) Response of forest floor nitrogen dynamics to liming. Biogeochemistry 32: 221–244 (this volume)

    Article  CAS  Google Scholar 

  • Sjors H (1952) On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2: 241–258

    Article  Google Scholar 

  • Spearing AM (1972) Cation-exchange capacity and galacturonic acid content of several species of Sphagnum in Sandy Ridge Bog, Central New York State. The Bryol. 75: 154–158

    Article  CAS  Google Scholar 

  • Stanek W & Jeglum JG (1977) Comparisons of peatland types using macro-nutrient contents of peat. Vegetatio 33: 163–173

    Article  Google Scholar 

  • Stoner JH & Donald AP (1991) Watershed liming - The Welsh experience. In: Olem H (Ed) International Lake and Watershed Liming Practices (pp 193–209). The Terrene Institute, Inc., Washington, DC

    Google Scholar 

  • Staubitz WW & Zarriello PJ (1989) Hydrology of two headwater lakes in the Adirondack Mountains of New York. Can. J. Fish. Aquat. Sci. 46: 268–276

    Article  Google Scholar 

  • Vitt DH & Chee W-L (1990) The relationship of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89: 87–106

    Article  Google Scholar 

  • Warfvinge P & Sverdrup H (1988) Soil liming as a measure to mitigate acid runoff. Water Resour. Res. 24: 701–712

    Article  CAS  Google Scholar 

  • Wieder RK & Lang GE (1988) Cycling of inorganic and organic sulfur in peat from Big Run Bog, West Virginia. Biogeochemistry 5: 221–242

    Article  CAS  Google Scholar 

  • Williams BL & Sparling GP (1988) Microbial biomass carbon and readily mineralizable nitrogen in peat and forest humus. Soil Biol. Biochem. 20: 579–581

    Article  Google Scholar 

  • Woodin S & Skiba U (1990) Liming fails the acid test. New Scientist 125 (10 March): 50–54

    Google Scholar 

  • Yavitt JB & Lang GE (1990) Methane production in contrasting wetland sites: Response to organic-chemical components of peat and to sulfate reduction. Geomicrobiol. J. 8: 27–46

    Article  CAS  Google Scholar 

  • Yavitt, JB & Newton RM (1990) Liming effects on some chemical and biological parameters of soil (Spodosols and Histosols) in a hardwood forest ecosystem. Water Air Soil Pollut. 54: 529–544

    CAS  Google Scholar 

  • Zelles L, Scheunert I & Kreutzer K (1987) Effect of artificial irrigation, acid precipitation and liming on the microbial activity in soil of a spruce forest. Biol. Fert. Soils 4: 137–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Charles T. Driscoll

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yavitt, J.B., Fahey, T.J. (1996). Peat and solution chemistry responses to CaCO3 application in wetlands next to Woods Lake, New York. In: Driscoll, C.T. (eds) Experimental Watershed Liming Study. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0275-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0275-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6608-2

  • Online ISBN: 978-94-009-0275-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics