Skip to main content

Recombination of Atomic Species on Surfaces

A Phenomenological Approach

  • Chapter
Molecular Physics and Hypersonic Flows

Part of the book series: NATO ASI Series ((ASIC,volume 482))

Abstract

In hypersonic flight and in high enthalpy test facilities it is normal for the flow to be dissociated and not in chemical equilibrium. There may be a significant amount of energy in latent form, particularly the heat of formation of atomic species. When an object or spacecraft encounters the flow the atoms may recombine on surfaces and give up part of that latent heat of dissociation to the surface. The amount of energy transferred to the surface depends on diffusion to the surface, the energy of the chemical bond, and on the probability of recombination on the surface. Other factors affecting the energy transfer is the fraction of the bond energy given to the surface per recombination event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golodets, G. I. (1983) Heterogeneous Catalytic Reactions Involving Molecular Oxygen, Elsevier, Amsterdam.

    Google Scholar 

  2. Scott, C. D. (1992) Wall Catalytic Recombination and Boundary Conditions in Nonequilibrium Flows-with Applications, in Advances in Hypersonics, Vol. 2, J. J. Bertin, J. Périaux, and J. Ballmann (eds.), Birkhaüser, Boston, pp. 176–250.

    Chapter  Google Scholar 

  3. Mellin, G. A. and Maddix, R. J. (1971) Energy Accommodation During Oxygen Atom Recombination on Metal Surfaces, Faraday Society Transactions 67, pp.198–211.

    Article  Google Scholar 

  4. Halpern, B. and Rosner, D. E. (1974) Chemical Energy Accommodation at Catalyst Surfaces, Chemical Society of London, Faraday Transactions I. Physical Chemistry 74, part 8, pp. 1883–1912.

    Article  Google Scholar 

  5. Breen, J., Rosner, D. E., et al. (1973) Catalysis Study for Space Shuttle Vehicle Thermal Protection Systems, NASA CR-134124.

    Google Scholar 

  6. Scott, C. D. (1981) Catalytic Recombination of Nitrogen and Oxygen on High Temperature Reusable Surface Insulation, Progress in Astronautics and Aeronautics, Vol. 77, edited by A. L. Crosbie, AIAA, New York, pp. 192–212.

    Google Scholar 

  7. Rosner, D. E. and Feng, H. H. (1974) Energy Transfer Effects of Excited Molecule Production by Surface Catalyzed Atom Recombination, J. of the Chemical Society, Faraday Transactions I 70, pp. 884–907.

    Article  Google Scholar 

  8. Berkut, V. D., Kudriavtsev, N. N., and Novikov, S. S. (1987) Heat Transfer at a Surface Flushed by Dissociated Nitrogen in the Presence of Heterogeneous Recombination of Electronically Excited Molecules, High Temperature 25, pp. 256–263.

    Google Scholar 

  9. Doroshenko, V. M., Kudriavtsev, N. N., and Smetanin, V. V. (1991) Equilibrium of Internal Degrees of Freedom of Molecules and Atoms in Hypersonic Flight in the Upper Atmosphere, High Temperature 29, pp. 815–832.

    Google Scholar 

  10. Tirsky, G. A. (1993) Up-to-date Gasdynamic Models of Hypersonic Aerodynamics and Heat Transfer with Real Gas Properties, Annual Rev. Fluid Mech 25, pp. 151–181.

    Article  MathSciNet  ADS  Google Scholar 

  11. Suslov, O. N. and Tirskiy, G. A. (1994) The Kinetics of the Recombination of Nitrogen Atoms on High-Temperature Reusable Surface Insulation in Hypersonic Thermochemical Non-equilibrium Flows, Proceedings of the Second European Symposium on Aerothermodynamics for Space Vehicles, held in ESTEC, Noordwijk, The Netherlands, 21–25 Nov. 1994, (ESA SP-367), pp. 413–419.

    Google Scholar 

  12. Jumper, E. J., Utlee, C. J., and Dorko, E. A. (1980) A Model for Fluorine Atom Recombination on a Nickel Surface, Journal of Physical Chemistry 84, pp. 41–50.

    Article  Google Scholar 

  13. Seward, W. A. and Jumper, E. J. (1991) Model for Oxygen Recombination on Silicon-Dioxide Surfaces, J. Thermophysics and Heat Transfer 5, pp. 284–291.

    Article  Google Scholar 

  14. Willey, R. J, (1993) Comparison of Kinetic Models for Atom Recombination on High-Temperature Reusable Surface Insulation, J. Thermophysics and Heat Transfer 7, 55–62.

    Article  ADS  Google Scholar 

  15. Kolodziej, P. and Stewart, D. A. (1987) Nitrogen Recombination on High-Temperature Reusable Surface Insulation and the Analysis of its Effect on Surface Catalysis, AIAA-87–1637.

    Google Scholar 

  16. Mârinelli, W. J. and Campbell, J. P. (1986) Spacecraft-Metastable Energy Transfer Studies, Physical Sciences, Inc., Andover, Mass., Final Report PSIG565/TR-595, Contract No. NAS9–17565, 31 July 1986.

    Google Scholar 

  17. Jumper, E. J. (1996) Recombination of Oxygen and Nitrogen on Silica-Based Thermal Protection Surfaces: Mechanism and Implications, in Molecular Physics and Hypersonic Flows, M. Capitelli (ed.), Kluwer Academic Publishers, Dordrecht, pp. 181–191.

    Google Scholar 

  18. Berkut, V. D., Kudriavtsev, N.N., and Novikov, S. S. (1986) Surface Thermophysical Properties Due to the Accommodation of Chemical Energy of a Supersonic Dissociated Gas Flow, Surveys on the Thermophysical Properties of Substances, TFTs Moscow, IVTAN No. 2 (58) pp. 3–135.

    Google Scholar 

  19. Smith, (1943) J. Chem. Phys., Vol. 11, pp. 110.

    Article  ADS  Google Scholar 

  20. Greaves, J. C. and Linnett, J. W. (1958) The Recombination of Oxygen Atoms at Surfaces, Transactions of the Faraday Society 54, pp. 1323–1330.

    Article  Google Scholar 

  21. Prok, G. M. (1961) Effect of Surface Preparation and Gas Flow on Nitrogen Atom Surface Recombination, NASA TN D-1090.

    Google Scholar 

  22. Myerson, A. L. (1965) Mechanisms of Surface Recombination form Step-Function Flows of Atomic Oxygen over Noble Metals, J. Chem. Phys. 42, No. 9, pp. 3270–3276.

    Article  ADS  Google Scholar 

  23. Hartunian, W. P. Thompson, and S. Safron (1965) Measurements of Catalytic Efficiency of Silver for Oxygen Atoms and the 0–02 Diffusion Coefficient, J. Chem. Phys. 43, No. 11, pp. 4003–4006.

    Article  ADS  Google Scholar 

  24. Goulard, R. J. (1958) On Catalytic Recombination Rates in Hypersonic Stagnation Heat Transfer, Jet Propulsion 28, pp. 737–745.

    Google Scholar 

  25. Pope, R. B. (1968) Stagnation-Point convective Heat Transfer in Frozen Boundary Layers, AIAA J., 6, pp. 619–626.

    Article  ADS  Google Scholar 

  26. Anderson, L. A. (1973) Effect of Surface Catalytic Activity on Stagnation-Point Heat Transfer Rates, AIAA J. 11, pp. 649–656.

    Article  ADS  Google Scholar 

  27. Scott, C. D. (1973) Measured Catalycities of Various Candidate Space Shuttle Thermal Protection System Coatings at Low Temperatures, NASA TN D-7113.

    Google Scholar 

  28. Scott, C. D. (1983) Catalytic Recombination of Nitrogen and Oxygen on IronCobalt-Chromia Spinel, AIAA Paper 83–0585.

    Google Scholar 

  29. Stewart, D. A., Rakich, J. V., and Lanfranco, M. J. (1982) Catalytic Surface Effects Experiment on the Space Shuttle, Progress in Astronautics and Aeronautics 82, edited by T. E. Horton, AIAA, New York, pp. 248–272

    Google Scholar 

  30. Vidal, R. J. and Golian, T. C (1967) Heat-Transfer Measurements with a Catalytic Flat Plate in Dissociated Oxygen, AIAA Journal 5, pp. 1579–1588.

    Article  ADS  Google Scholar 

  31. East, R. A., Stalker, R. J., and Baird, J. P. (1980) Measurements of heat transfer to a flat plate in a dissociated high-enthalpy laminar air flow, J. Fluid Mechanics 97, pp. 673–699.

    Article  ADS  Google Scholar 

  32. Berkut, V. D., Kovtun, V. V., Kudriavtsev, N. N., Novikov, S. S., and Sharovatov, A. I. (1986) Determination of the time-resolved probabilities of heterogeneous recombination of atoms in shock tube experiments, Int. J. Heat Mass Transfer 29, pp. 1–19.

    Article  ADS  Google Scholar 

  33. Carleton, K. L. and Marinelli, W. J. (1992) Spacecraft Thermal Energy Accommodation from Atomic Recombination, J. Thermophysics and Heat Transfer 6 pp. 650–655.

    Article  Google Scholar 

  34. Minton, T. K. and Moore, T. A. (1993) Molecular Beam Scattering from 13C-Enriched Kapton and Correlation with the EIOM-3 Carousel Experiment, in Proceedings of the 3rd LDEF Post-Retrieval Symposium, Williamsburg, VA, November 1993, NASA CP-3275, pp. 1115–1128.

    Google Scholar 

  35. Gupta, R. N., Lee, K. P., and Scott, C. D. (1995) An Aerothermal Study of MESUR Pathfinder Aeroshell, submitted to the Journal of Spacecraft and Rockets.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Scott, C.D. (1996). Recombination of Atomic Species on Surfaces. In: Capitelli, M. (eds) Molecular Physics and Hypersonic Flows. NATO ASI Series, vol 482. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0267-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0267-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6604-4

  • Online ISBN: 978-94-009-0267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics