Skip to main content

Non-Equilibrium Chemistry Models for Shock-Heated Gases

  • Chapter
Molecular Physics and Hypersonic Flows

Part of the book series: NATO ASI Series ((ASIC,volume 482))

Abstract

We demonstrate the utility of Information Theory for the efficient computation of state-specific reaction rates needed in hypersonic flow computations. We summarize our recent work on vibrational state-specific inelastic rates and dissociation cross-sections. The reaction rate matrix we generate is used to compute the spatially homogenous relaxation process of a diatomic gas dilute in an inert bath gas when the temperature is suddenly raised to a high value. Linear algebraic methods are used to solve the master equation efficiently. We find that almost the entire relaxation process, including vibrational state populations, can be described accurately using data related to the translational temperature only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gonzales, D.A. and Varghese, P.L. (1993) A Simple Model for State-Specific Diatomic Dissociation, J. Physical Chemistry 97, 7612–7622.

    Article  Google Scholar 

  2. Gonzales, D.A. and Varghese, P.L. (1994) Evaluation of Simple Rate Expressions for Vibration-Dissociation Coupling, J. Thermophysics and Heat Transfer 8, 236–243.

    Article  Google Scholar 

  3. Gonzales, D.A. and Varghese, P.L. (1995) Vibrational Relaxation Models for Dilute Shock-Heated Gases, J. Chemical Physics 195, 83–91.

    Article  ADS  Google Scholar 

  4. Levine, R.D. and Bernstein, R.B. (1976) Thermodynamic Approach to Collision Processes, in W.H. Miller (ed.), Dynamics of Molecular Collisions, Part ‘B, Plenum Press, New York, pp. 323–364.

    Google Scholar 

  5. Procaccia, I. and Levine, R.D. (1975) Vibrational Energy Transfer in Molecular Collisions: An Information Theoretic Analysis and Synthesis, J. Chemical Physics 63, 4261–4279 (see also references therein)

    Article  ADS  Google Scholar 

  6. Millikan, R.C. and White, D.R. (1963) Systematics of Vibrational Relaxation, J. Chemical Physics 39, 3209–3213.

    Article  ADS  Google Scholar 

  7. Duff, J.W., Blais, N.C., and Truhlar, D.G. (1979) Monte Carlo Trajectory Study of Ar+H2 Collisions: Thermally Averaged Vibrational Transition Rates at 4500 K, J. Chemical Physics 71, 4304–4320.

    Article  ADS  Google Scholar 

  8. Dove, J.E. and Teitelbaum, H. (1974) The vibrational relaxation of H2. I. Experimental measurements of the rate of relaxation by H2, He, Ne, Ar, and Kr, Chemical Physics 6, 431–444.

    Article  ADS  Google Scholar 

  9. Keck, J. and Carrier, G. (1965) Diffusion Theory of Nonequilibrium Dissociation and Recombination,“ J. Chemical Physics 43, 2284–2298.

    Article  MathSciNet  ADS  Google Scholar 

  10. Schwartz, R.N., Slawsky, Z.J., and Herzfeld, K.F. (1952) Calculation of Vibrational Relaxation Times in Gases, J. Chemical Physics 20, 1591–1599.

    Article  ADS  Google Scholar 

  11. Kafri, A. and Levine, R.D. (1976) Comment on the dynamics of dissociation of diatomic molecules: Mass and temperature effects, J. Chemical Physics 64, 5320–5321.

    Article  ADS  Google Scholar 

  12. Kiefer, J.H. and Hajduk, J.C. (1979) A Vibrational Bias Mechanism for Diatomic Dissociation: Induction Times and Steady Ratres for O2, H2 and D2 Dilute in Ar, Chemical Physics 38, 329–340.

    Article  ADS  Google Scholar 

  13. Haug, K., Truhlar, D.G., and Blais, N.C. (1987) Monte Carlo Trajectory and Master Equation Simulation of the Nonequilibrium Dissociation Rate Coefficient for Ar+H2 Ar+2H at 4500 K, J. Chemical Physics 86, 2697–2716.

    Article  ADS  Google Scholar 

  14. McElwain, D.L.S. and Pritchard, H.O. (1971) The Temperature Coefficients of Diatomic Dissociation and Recombination Reactions, Thirteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, pp. 37–49.

    Google Scholar 

  15. Pritchard, H.O. (1975) Network Effects in the Dissociation and Recombination of a Diatomic Gas, Reaction Kinetics 1, 243–290.

    Article  Google Scholar 

  16. Itoh, H.; Koshi, M.; Asaba, T.; Matsui, H. (1985) Vibrational Non-equilibrium Dissociation of Br2 in Collisions with Ar and Br Atoms,.J. Chemical Physics 82, 4911–4915

    Article  ADS  Google Scholar 

  17. Schwenke, D.W. (1990), A theoretical prediction of hydrogen molecule dissociation-recombination rates including an accurate treatment of internal state nonequilibrium effects, J. Chemical Physics 92, 7267–7282.

    Article  ADS  Google Scholar 

  18. Park, C. (1989) Assessment of Two-Temperature Kinetic Model for Ionizing Air, J. Thermophysics Heat Transfer 3, 233–244.

    Article  ADS  Google Scholar 

  19. Billing, G.D. (1986) Vibration-vibration and Vibration-Translation Energy Transfer, Including Multiquantum Transitions in Atom-Diatom and Diatom-Diatom Collisions, in M. Capitelli (ed.) Nonequilibrium Vibrational Kinetics, Springer-Verlag, Berlin, pp. 85–112.

    Google Scholar 

  20. Billing, G.D. (1994) Classical path method in inelastic and reactive scattering, International Reviews in Physical Chemistry 13, 309–335.

    Article  ADS  Google Scholar 

  21. Laganà, A. and Garcia, E. (1994) Temperature Dependence of N + N2 Rate Coefficients, J. Physical Chemistry 98, 502–507.

    Article  Google Scholar 

  22. Gilibert, M., Giménez, X., Gonzalez, M., Sayós, R. and Aguilar, A. (1995) A comparison between experimental, quantum and quasiclassical properties for the N(4Su) + O2(X 3Σ g) → NO(X 2II) + O(3Pg) reaction, Chemical Physics 191, 1–15.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Varghese, P.L., Gonzales, D.A. (1996). Non-Equilibrium Chemistry Models for Shock-Heated Gases. In: Capitelli, M. (eds) Molecular Physics and Hypersonic Flows. NATO ASI Series, vol 482. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0267-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0267-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6604-4

  • Online ISBN: 978-94-009-0267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics