Skip to main content

Vibrational Kinetics for Numerical Simulation of Thermal Non Equilibrium Flows

  • Chapter
Molecular Physics and Hypersonic Flows

Part of the book series: NATO ASI Series ((ASIC,volume 482))

  • 631 Accesses

Abstract

In numerical simulation of subsonic and supersonic flows thermodynamic models built on the Boltzmann distribution are widely used. In these models the population distributions of the quantum states associated with each independent molecular degree of freedom follow a Boltzmann distribution and the major benefit deriving from this hypothesis is that the thermodynamics of a gas mixture can be described by a set of algebraic functions. However, for sufficiently high Mach numbers, the energy density of the flow field becomes considerably large and leads to more marked non-equilibrium effects; therefore, one should expect the Boltzmann distribution assumption to become less tenable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. E. Meador, G. A Miner and J. H. Heinbockel (1993) Vibrational relaxation in hypersonic flow fields, NASA TP–3367.

    Google Scholar 

  2. M. Cacciatore, M. Capitelli, S. De Benedictis, M. Dilonardo, C. Gorse (1986) Vibrational kinetics, dissociation and ionization of diatomic molecules under nonequilibrium conditions, in M. Capitelli, Topics in Current Physics, Vol.99: Nonequilibrium Vibrational Kinetics, Springer Verlag, Berlin, pp. 5–46.

    Google Scholar 

  3. C. F. Hansen (1983) Rate processes in gas phase, NASA RP–1090.

    Google Scholar 

  4. M. Capitelli and E. Molinari (1980) Kinetics of dissociation processes in plasmas in the low and intermediate pressure range, in S. Veprek and M. Venugopalan, Topics in Current Chemistry, Vol. 94: Plasma Chemistry III, Springer Verlag, Berlin, pp. 59–109.

    Google Scholar 

  5. R. C. Millikan and D. R. White (1963) Systematics of vibrational relaxation, J. Chem. Phys. 39, 3209.

    Article  ADS  Google Scholar 

  6. V. Blackman (1956) Vibrational relaxation in oxygen and nitrogen, J. Fluid Mech. 1, 61.

    Article  ADS  Google Scholar 

  7. W. G. Vincenti and C. H. Kruger, Jr. (1965) Introduction to physical gas dynamics, Krieger Publishing Company, Florida.

    Google Scholar 

  8. J. D. Anderson, Jr. (1989) Hypersonic and high temperature gas dynamics, McGraw Hill Book Co., New York.

    Google Scholar 

  9. I. Armenise, M. Capitelli, R. Celiberto, G. Colonna, C. Gorse, A. Laganà (1994) The effect of N + N2 collisions on the non-equilibrium vibrational distributions of nitrogen under reentry conditions, Chem. Phys. Lett. 227, 157.

    Article  ADS  Google Scholar 

  10. I. Armenise, M. Capitelli (1995) On the coupling of non-equilibrium vibrational kinetics and dissociation-recombination processes in the boundary layer surrounding an hypersonic reentry vehicle, 2nd European Symposium on Aerothermodynamics for Space Vehicles, ESA-SP-367.

    Google Scholar 

  11. G. Herzberg (1963) Molecular spectra and molecular structure, I. Spectra of diatomic molecules, D. Van Nostrand, Inc., New York.

    Google Scholar 

  12. K. P. Huber and G. Herzberg (1979) Constants of diatomic molecules, Van Nostrand Rheinold, New York.

    Google Scholar 

  13. R. C. Swanson and E. Turkel (1992) On central-difference and upwind schemes, J. Comput. Phys. 101, 292.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. S. P. Sharma, S. M. Ruffin, W. D. Gillespie and S. A. Meyer (1992) Nonequilibrium vibrational population measurements in an expanding flow using spontaneous Raman spectroscopy, 27th Thermophysics Conference, AIAA Paper 92–2855.

    Google Scholar 

  15. R. A. Jones, L. N. Myrabo and H. T. Nagamatsu (1995) A numerical investigation of the effect of vibrational nonequilibrium in expanding flows, 30th Thermophysics Conference, AIAA Paper 95–2076.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bellucci, V., Giordano, D., Colonna, G., Capitelli, M., Armenise, I., Bruno, C. (1996). Vibrational Kinetics for Numerical Simulation of Thermal Non Equilibrium Flows. In: Capitelli, M. (eds) Molecular Physics and Hypersonic Flows. NATO ASI Series, vol 482. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0267-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0267-1_45

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6604-4

  • Online ISBN: 978-94-009-0267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics