Skip to main content

Interfacing Nonequilibrium Models with Computational Fluid Dynamics Methods

  • Chapter
Molecular Physics and Hypersonic Flows

Part of the book series: NATO ASI Series ((ASIC,volume 482))

Abstract

In this paper we discuss how thermo-chemical nonequilibrium models must be chosen to suit specific hypersonic flows. Current models can be very complicated, involving a large chemical kinetics model and many internal energy modes. Also, realistic hypersonic flows have a very large range of length scales, making them difficult to simulate with computational methods. Therefore, it is important to use thermo-chemical models that are appropriate; the models should have sufficient complexity to capture the relevant properties of the flow, with a minimum of computational cost. Thus, there is no single thermo-chemical model that is appropriate for all re-entry flows, and more complicated models may not be useful because they make the problem computationally intractable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bose, D. and Candler, G.V. (1996) Kinetics of the N2 + O → NO + N Reaction in Nonequilibrium Flows, AIAA Paper No. 96–0104.

    Google Scholar 

  2. Boyd, I.D., Chen, G. and Candler, G.V. (1995) Predicting Failure of the Continuum Fluid Equations in Transitional Hypersonic Flows, Physics of Fluids 7 pp. 210–219.

    Article  ADS  MATH  Google Scholar 

  3. Boyd, I.D., Candler, G.V. and Levin, D.A. (1995) Dissociation Modeling in Low Density Hypersonic Flows of Air, Physics of Fluids 7 pp. 1757–1763.

    Article  ADS  MATH  Google Scholar 

  4. Burnett, D. (1936) The Distribution of Molecular Velocities and the Mean Motion in a Non-Uniform Gas, Proc. London Mathematical Soc. 40 pp. 382.

    Article  Google Scholar 

  5. Clarke, J.F. and McChesney, M. (1975) Dynamics of Relaxing Gases Butterworths, London.

    Google Scholar 

  6. Faist, M.B., Muckerman, J T and Schubert, F.E. (1978) Importance Sampling and Histogrammic Representations of Reactivity Functions and Product Distributions in Monte Carlo Quasiclassical Trajectory Calculations, J. Chem. Phys. 69 pp. 4087–4096.

    Article  ADS  Google Scholar 

  7. Gilibert, M., Aguilar, A., González, M. and Sayós, R. (1993) Quasiclassical Trajectory Study of \( N{{(}^{4}}{{S}_{u}}) + {{O}_{2}}({{X}^{3}}\Sigma _{g}^{ - }) \to NO({{X}^{2}}II) + O{{(}^{3}}{{P}_{g}}) \) Atmospheric Reaction on the 2 Atmospheric Reaction on the 2A ‘Ground Potential Energy Surface Employing an Analytical Sorbie-Murrell Potential, Chem. Phys. 172 pp. 99–115.

    Article  Google Scholar 

  8. Gilibert, M., Aguilar, A., Gonzalez, M. and Sayós, R. (1993) Dynamics of the \( N{{(}^{4}}{{S}_{u}}) + NO({{X}^{2}}II) \to {{N}_{2}}({{X}^{1}}\Sigma _{g}^{ + }) + O{{(}^{3}}{{P}_{g}}) \) Atmospheric Reaction on the 3A“ Ground Potential Energy Surface II. Analytical Potential Energy Surface and Preliminary Quasiclassical Trajectory Calculations, J. Chem. Phys. 99 pp. 1719–1733.

    Article  ADS  Google Scholar 

  9. Gilibert, M., Aguilar, A., Gonzalez, M., Mota, F. and Sayds, R. (1993) Dynamics of the \( N{{(}^{4}}{{S}_{u}}) + NO({{X}^{2}}II) \to {{N}_{2}}({{X}^{1}}\Sigma _{g}^{ + }) + O{{(}^{3}}{{P}_{g}}) \) Atmospheric Reaction on the 3 A“ Ground Potential Energy Surface I. Analytical Potential Energy Surface and Preliminary Quasiclassical Trajectory Calculations, J. Chem. Phys. 97 pp. 5542–5553.

    Article  ADS  Google Scholar 

  10. Hassan, B., Candler, G.V. and Olynick, D.R. (1993) Thermo-Chemical Nonequilibrium Effects on the Aerothermodynamics of Aerobraking Vehicles, J. Spacecraft and Rockets 30 pp. 647–655.

    Article  ADS  Google Scholar 

  11. Heims, S.P. (1963) Moment Equations for Vibrational Relaxation Coupled with Dissociation, J. Chem. Phys. 38 pp. 603.

    Article  ADS  Google Scholar 

  12. Hirst, D.M. (1985) Potential Energy Surfaces: Molecular Structure and Reaction Dynamics Taylor and Francis, London.

    Google Scholar 

  13. Karplus, M., Porter, R.N. and Sharma, R.D. (1965) Exchange Reactions with Activation Energy, J. Chem. Phys. 43 pp. 3259–3287.

    Article  ADS  Google Scholar 

  14. Lee, J.H. (1985) Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Vehicles, Thermal Design of Aeroassisted Orbital Transfer Vehicles, ed. H.F. Nelson, Progress in Aeronautics and Astronautics 96 pp. 3–53.

    Google Scholar 

  15. Levin, D.A., Candler, G.V. Collins, R.J., Erdman, P.W., Zipf, E.C. and Howlett, L.C. (1994) Examination of Theory for Bow Shock Ultraviolet Rocket Experiments-I, Journal of Thermophysics and Heat Transfer 8 pp. 447–452.

    Article  Google Scholar 

  16. Levin, D.A., Candler, G.C. and Collins, R.J. (1995) An Overlay Method for Calculating Excited State Species Properties in Hypersonic Flows, AIAA Paper No. 95–2073.

    Google Scholar 

  17. Lumpkin, F. E., III and Chapman, D.R. (1992) Accuracy of the Burnett Equations for Hypersonic Real Gas Flows, J. Thermophysics and Heat Transfer 6 pp. 419–425.

    Article  ADS  Google Scholar 

  18. Macheret, S.O. and Rich, J.W. (1993) Nonequilibrium Dissociation Rates Behind Strong Shock Waves. Classical Model, J. Chem. Phys. 174 pp. 25.

    Article  Google Scholar 

  19. Marrone, P.V. and Treanor, C.E. (1963) Chemical Relaxation With Preferential Dissociation from Excited Vibrational Levels, Physics of Fluids 6 pp. 1215–1221.

    Article  ADS  MATH  Google Scholar 

  20. Olejniczak, J., Candler, G.V., Hornung, H.G. and Wen, C. (1994) Experimental Evaluation of Vibration-Dissociation Coupling Models, AIAA Paper No. 94–1983.

    Google Scholar 

  21. Park, C. (1986) Assessment of Two-Temperature Kinetic Model for Dissociating and Weakly Ionizing Nitrogen, AIAA Paper No. 86–1347.

    Google Scholar 

  22. Park, C., Howe, J.T., Jaffe, R.L. and Candler, G.V. Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries, J. Thermophysics and Heat Transfer 8 pp. 9–23.

    Google Scholar 

  23. Porter, R.N. and Raff, L.M. (1976) Classical Trajectory Methods in Molecular Collisions, Dynamics of Molecular Collisions Part B, ed. W.H. Miller, Plenum, New York, pp. 1–50.

    Google Scholar 

  24. Truhlar, D.G. and Muckerman, J.T. (1979) Reactive Scattering Cross Sections III: Quasiclassical and Semiclassical Methods, Atom Molecule Collision Theory, ed. R.B. Bernstein, Plenum, New York, pp. 505–561.

    Google Scholar 

  25. Walch, S.P. and Jaffe, R.L. (1986) Calculated Potential Surfaces for the Reactions: O + N2 → NO + N and N + O2 → NO + O,“ J. Chem. Phys 86 pp. 6946–6956.

    Article  ADS  Google Scholar 

  26. Zhong, X., MacCormack, R.W. and Chapman, D.R. (1993) Stabilization of the Burnett Equations and Applications to Hypersonic Flows, AIAA J. 31 pp. 1036.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Candler, G.V., Bose, D., Olejniczak, J. (1996). Interfacing Nonequilibrium Models with Computational Fluid Dynamics Methods. In: Capitelli, M. (eds) Molecular Physics and Hypersonic Flows. NATO ASI Series, vol 482. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0267-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0267-1_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6604-4

  • Online ISBN: 978-94-009-0267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics