Skip to main content

Reactive Cross Sections Involving Atomic Nitrogen and Ground and Vibrationally Excited Molecular Oxygen and Nitric Oxide

  • Chapter
Molecular Physics and Hypersonic Flows

Part of the book series: NATO ASI Series ((ASIC,volume 482))

Abstract

The reactions of atomic nitrogen with molecular oxygen and nitric oxide play an important role in the chemistry of the upper atmosphere, and also to model accurately the conditions existing around a reentering body. The N + O2 system is also an important role of chemiluminiscence in the upper atmosphere. This contribution briefly reviews some of the most powerful theoretical methodologies available for the calculation of detailed and averaged dynamical quantities and presents an overview of the most relevant results obtained in our group about these systems in the last years applying those methodologies, with special emphasis in considering diatomic molecules both in the low and highly excited vibrational levels. Finally, a new improved analytical ground potential energy surface for the reaction of nitrogen with molecular oxygen is presented and some preliminary results discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sharma, R.D., Sun, Y. and Dalgamo, A. (1993) Higly rotationally excited nitric oxide in the terrestrial thermosphere, Geophys. Res. Lett. 20, 2043–2045, and references therein.

    Article  ADS  Google Scholar 

  2. Duff, J.W., Bien, F. and Paulsen, D. E. (1994) Classical dynamics of the N(4A) + O2(X3Σ -g ) → NO(X2II) + O(3P) reaction, Geophys. Res. Lett. 21, 2043–2046

    Article  ADS  Google Scholar 

  3. Jaffe, R.L. (1986) Thermophysical Aspects of Re-entry Rows, in J.N. Moss and C. D. Scott (eds.), Progress in Astronautics and Aeronautics, AIAA, New York, 1986 Vol. 96, pp. 123–151

    Google Scholar 

  4. Zeldovich, Ya. B. (1946), Oxidation of N in combustion and explosion Acta Physiochim URSS 21, 577

    Google Scholar 

  5. Schiff, H.I. (1964), Reactions involving N and O Ann. Geophys. 20, 115

    Google Scholar 

  6. Heicklen, J., Cohen, N. (1968), Role of nitric oxide in photochemistry Adv. Photochem. 5, 157

    Article  Google Scholar 

  7. Gorse, C., Capitelli, M., Bretagne J. and Bacal,M. (1985) Vibrational Excitation and Negative-ion production in magnetic multicusp hydrogen discharges Chem. Phys. 93, 1.

    Article  Google Scholar 

  8. Capitelli, M.; Gorse C.; Ricard, A. (1986) Top. Curr. Phys. 39, 5.

    Google Scholar 

  9. Laganà, A.; Garcia, E. and Ciccarelli, L. (1987) Deactivation of vibrationally excited nitrogen molecules by collision with nitrogen atoms J. Phys. Chem. 91, 312.

    Article  Google Scholar 

  10. Birely, J. H. and Lyman J.L. (1975) Effect of reagent vibrational energy on measured reaction rate constants J. Photochem. 4, 269.

    Article  Google Scholar 

  11. Zenner, R. (1984) Bimolecular Reaction Rate Coefficients, in W. C. Gardiner, Jr. (ed.), Combustion Chemistry, Springer Verlag, New York, pp.127–169, and references therein.

    Google Scholar 

  12. Kuntz, P. J. (1976) Features of Potential Energy Surfaces and their effect on Collisions, in W. H. Miller (ed.), Dynamics of Molecular Collisions, Plenum Press, New York, pp. 53–116.

    Google Scholar 

  13. Murrell J. N.; Carter, S.; Farantos, S. C.; Huxley, P. and Varandas A. J. C. (1984) Molecular Potential Energy Functions, John Wiley & Sons, New York.

    Google Scholar 

  14. Sorbie, K. S.; Murrell, J. N. (1975) Analytical potentials for triatomic molecules from spectroscopic data Mol. Phys. 29, 1378.

    Article  ADS  Google Scholar 

  15. Eyring, H. (1935) The activated complex in chemical reactions J. Chem. Phys. 3, 107.

    Article  ADS  Google Scholar 

  16. Evans M. G. and Polanyi M., (1935) Calculation of reaction velocities Trans. Faraday Soc. 31, 875.

    Article  Google Scholar 

  17. Garrett, B. C. and D. G. Truhlar D. G. (1979) Generalized Transition State Theory. C.assical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem. 83, 1052; (erratum (1979) 83, 3058; (erratum) (1983) 87, 4553.

    Google Scholar 

  18. Truhlar, D. G. and Muckerman, J. T. (1979) Reactive Cross Sections: Quasi and Semiclassical methods, in R. B. Bersntein (ed.) Atom-Molecule Collision Theory, Plenum Press, New York.

    Google Scholar 

  19. Karplus, M.; Porter, R. N. and Sharma, R. D. (1965) Exchange Reactions with Activation Energy. I. Simple Barrier Potential for (H,H2)+ J. Chem. Phys. 43, 3259–3287.

    Article  ADS  Google Scholar 

  20. Truhlar, D. G. and Blais, N. C. (1977) Legendre moment method for calculating differential scattering cross sections from classical trajectories with Monte Carlo initial conditions J. Chem. Phys. 67, 1532–1538, and references therein.

    Article  ADS  Google Scholar 

  21. Schatz, G. C. and Kuppennan, A. (1976) Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. I. Theory J. Chem. Phys. 65, 4642–4667. For the most recent collection of

    Article  MathSciNet  ADS  Google Scholar 

  22. D methods, see: Bowman, J. M. (ed.) (1994) Advances in Molecular Vibrations and Collision Dynamics. Vols 2A and 2B. JAI Press, Greenwich.

    Google Scholar 

  23. Elkowitz, A.B. and Wyatt R.E. (1976) 4-conserving approximation for the hidrogen exchange reaction Mol. Phys. 31, 189.

    Article  ADS  Google Scholar 

  24. Kuppermann A.; Schatz, G. C.; Dwyer R.E. (1977) Angular momentum decoupling approximations in the quantum dynamics of reactive systems Chem. Phys. Lett. 45, 71.

    Article  ADS  Google Scholar 

  25. Secrest, D. (1975) Theory of angular momentum decoupling approximations for rotational transitions in scattering J. Chem. Phys. 62, 710.

    Article  ADS  Google Scholar 

  26. Khare, V. (1978) On the lz-conserving energy sudden approximation for atom-diatom scattering J. Chem. Phys. 68, 4631.

    Article  ADS  Google Scholar 

  27. Khare V.; Kouri, D. J. and Baer M. (1979) Infinite order sudden approximation for reactive scattering. I. Basic 1-labelled theory J. Chem. Phys. 71, 1188.

    Article  ADS  Google Scholar 

  28. Jellinek, J. (1985) Approximate Treatments of Reactive Scattering: Infinite Order Sudden Approximation, in M. Baer (ed.) Theory of Chemical Reaction Dynamics, Vol II., CRC Press, Boca Raton, pp. 2–119.

    Google Scholar 

  29. Nakamura, H.; Ohsaki, A. M. Baer M. (1986) New implementation to approximate quantum mechanical treatment of atom-diatom chemical reactions J. Phys. Chem. 90, 6176.

    Article  Google Scholar 

  30. Kaufman, F. and Kelso, J. R. (1955) Thermal Decomposition of Nitric Oxide J. Chem. Phys. 23, 1702–1707.

    Article  ADS  Google Scholar 

  31. Kistiakowsky, G. B. and Volpi, G. G. (1957), Reactions of Nitrogen Atoms. I. Oxygen and Oxides of Nitrogen J. Chem. Phys. 27, 1141–1149.

    Article  ADS  Google Scholar 

  32. C. B. Kretschmer, H. L. Petersen, (1963) kinetics of three-body atom recombination J. Chem. Phys. 39, 1772.

    Article  Google Scholar 

  33. Wilson, W. E. (1966) Rate Constant for the Reaction N + O2 → NO + O J. Chem. Phys. 46, 2017–2018.

    Article  ADS  Google Scholar 

  34. Bamett, A. J.; Marston, G. and Wayne, R. P. (1987) Kinetics and Chemiluminiscence in the Reaction of N Atoms with O2 and O3 J. Chem. Soc. Faraday Trans 2. 83, 1453–1463.

    Article  Google Scholar 

  35. Clyne, M. A. A. and Thrush, B. A. (1961) Rates of the reactions with O2 and NO Proc. Roy. Soc. A 261, 259.

    Article  ADS  Google Scholar 

  36. Baulch, D. L.; Drysdale D. D. and Haine, D. G. (1973) Evaluated Kinetic Data for High Temperature Reactions, Vol. 2. Butterworths, London.

    Google Scholar 

  37. Basevich, V. Ya. (1987) Detailed kinetic mechanisms for the combustion of homogeneous gaseous mixtures with oxigen-containing oxidizing agents, Prog. Energy Combust. Sci. 13, 199.

    Article  Google Scholar 

  38. Hanson, R. K. and Salinian S. (1984) Survey of Rate Constants in the N/H/O System, in W. C. Gardiner, (ed.), Combustion Chemistry, Springer Verlag, New York, pp. 352–461.

    Google Scholar 

  39. Miller, J. A. and Bowman, C. T. (1989) Mechanism and modeling of nitrogen chemistry in combustion Prog. Energy Combust. Sci. 15, 287.

    Article  Google Scholar 

  40. Hushfar F.; Rogers, J. W. and Stair Jr., A. T. (1971) Infrared Chemiluminiscence of the Reaction N + O2 → NO + O Appl. Optics 10, 1843–1847. (1972) 11, 1656–1657.

    Google Scholar 

  41. Whitson Jr., M. E.; Damton, L. A. and McNeal, R. J. (1976) Vibrational Energy distribution in the NO produced by the reaction of N(4S) with O2 Chem. Phys. Lett. 41552–556.

    Article  ADS  Google Scholar 

  42. Rahbee, A. and Gibson, J. J. (1981) Rate constants for formation of NO in vibrational levels v = 2 through 7 from the reaction N(4S) + O2 → NO + O J. Chem. Phys. 745143–5148.

    Article  ADS  Google Scholar 

  43. Herrn, R. R.; Sullivan, B. J. and Whitson Jr., M. E. (1983) Nitric oxide vibrational excitation from the N(4S) + O2 reaction J. Chem. Phys. 79, 2221–2230.

    Article  ADS  Google Scholar 

  44. Winkler, I. C.; Stachnik, R. A.; Steinfeld, J. I. and Miller S. M. (1986) Determination of NO(v=0–7) product distribution from the N(4S) + O2 reaction using two-photon ionization J. Chem. Phys. 85, 890–899.

    Article  ADS  Google Scholar 

  45. Jackels, C.F. and Davidson, E. R. (1976) The two lowest 2A’ states of NO2 J. Chem. Phys. 64, 2908–2917.

    Article  ADS  Google Scholar 

  46. Wilson Jr., C. W. (1975) Diatomics-in-molecules potentials for N(4S) collisions with O2(3Σ -g ) J.Chem. Phys. 62, 4843–4847.

    ADS  Google Scholar 

  47. Benioff, P. A.; Das, G. and Wahl, A. C. (1977) Ab initio calculations of the minimum energy path in the doublet surface for the reaction N(4S) + O2(3Σ -g ) → NO(2IIu) + O(3P) J. Chem. Phys. 67, 2449–2462.

    Article  ADS  Google Scholar 

  48. Das, G. and Benioff, P. A. (1980) A study of the minimum energy path of the reaction N(4S) + O2(3Σ -g ) -→ NO(2IIu) + O(3P) Chem. Phys. Lett. 75, 519–524.

    Article  ADS  Google Scholar 

  49. Walch, S. P. and Jaffe, R. L. (1987) Calculated potential surfaces for the rections O + N2 → NO + N and N + O2 → NO + O J. Chem. Phys. 86, 6946–6956.

    Article  ADS  Google Scholar 

  50. Gilibert, M.; Aguilar, A.; Gonzalez, M. and Sayós, R. (1993) Quasiclassical trajectory study of the N(4Su) + O2(3Σ -g ) → NO(2IIu) + O(3Pg) atmospheric reaction on the 2A’ ground potential energy surface employing an analytical Sorbie-Murrell potential Chem. Phys. 172, 99–115.

    Article  Google Scholar 

  51. Gilibert, M.; Aguilar, A.; Gonzalez, M. and Sayós, R. (1993) A quasiclassical trajectory study of the effect of the initial rovibrational level and relative translational energy on the dynamics of the N(4Su) + O2(3Σ -g ) → NO(2IIu) + O(3Pg) atmospheric reaction on the 2A’ ground potential energy surface Chem. Phys. 178, 287–303.

    Article  Google Scholar 

  52. Gilibert, M.; Giménez X.; Gonzalez, M.; Sayós, R. and Aguilar, A. (1995) A comparison between experimental, quantum and quasiclassical properties for the N(4S) + O2(3Σ -g ) → NO(211) + O(3P) reaction Chem. Phys. 191, 1–15.

    Article  Google Scholar 

  53. Sayós, R.; Aguilar, A.; Gilibert, M. and Gonzalez, M. (1993) Orientational dependence of the N(4S) + NO(X2II) and N(4S) + O2(X3Σ -g ) Reactions: Comparison of the Angle-dependent Line-of-centres Model with Quasiclassical Trajectories J. Chem. Soc. Faraday Trans. 89, 3223–3234.

    Article  Google Scholar 

  54. Jaffe, R. L.; Pattengill, M. D. and Schwenke, D. W. (1989) Classical Trajectory studies of gas phase reaction dynamics and kinetics using ab initio potential energy surfaces, in A. Laganà (ed.), Supercomputer Algorithms for Reactivity. Dynamics and Kinetics of Small Molecules, Kluwer Academic Publishers, Dordrecht, pp. 367–382.

    Google Scholar 

  55. Polanyi, J. C. (1972) Some concepts in Reaction Dynamics Acc. Chem. Res. 5, 161–168.

    Article  Google Scholar 

  56. Suzzi Valli, G.; Orrt, R.; Clementi, E.; Laganà, A. and Crocchianti, S. (1995) Rate coefficients for the N + O2 reaction computed on an ab initio potential energy surface, J. Chem. Phys. 102, 2825–2832.

    Article  ADS  Google Scholar 

  57. Gilibert, M.; Giménez, X.; Gonzalez, M.; Sayós, R., Hijazo, J. and Aguilar, A. (1995) A theoretical study of the N + O2 atmospheric reaction on a new optimized potential energy surface, to be submitted.

    Google Scholar 

  58. Kistiakowsky, G. B. and Volpi, G. G. (1958) Reactions of nitrogen atoms. H. H2, CO, NH3, NO and NO2 J. Chem. Phys. 28, 665.

    Article  ADS  Google Scholar 

  59. Clyne, M. A. A. and Thrush, B. A. (1961) Rates of the reactions of nitroghen atoms with oxigen and nitric oxide Nature 189, 56.

    Article  ADS  Google Scholar 

  60. Herron, J. T. (1961) Rate of the reaction NO+N J. Chem. Phys. 35, 1138.

    Article  ADS  Google Scholar 

  61. Phillips, L. F. and Schiff, H. I. (1962) Mass Spectrometric Studies of Atom Reactions. I Reactions in the Atomic Nitrogen-Ozone System J. Chem. Phys. 36, 1509–1516.

    Article  ADS  Google Scholar 

  62. Clyne, M. A. A. and McDemtid, I. S. (1975) Mass Spectrometric Determinations of the Rates of Elementary Reactions of NO and of NO2 with Ground State N4S Atoms J. Chem. Soc. Faraday Trans. 71, 2189–2202.

    Article  Google Scholar 

  63. Lee, J. H.; Michael, J. V.; Payne W. A. and Stief, L. J. (1978) Absolute Rate of the reaction of N(4S) with NO from 196–400 K with DF-RF and FP-RF techniques J. Chem. Phys. 69, 3069–3076.

    Article  ADS  Google Scholar 

  64. Koshi, M.; Yoshimura, M.; Fukuda, K.; Matsui, H.; Saito, K.; Watanabe, M.; Imamura, A. and Chen, C. (1990) Reactions of nitrogen (N(4S)) atoms with nitric oxide and hydrogen, J. Chem. Phys. 93, 8703–8708.

    Article  ADS  Google Scholar 

  65. Michael, J. V. and Lim, K. P. (1992) Rate Constants for the N2O reaction system: Thermal decomposition of N2O; N + NO → N2+ O; and implications for O + N2 → NO + N, J. Chem. Phys. 97, 3228–3234.

    Article  ADS  Google Scholar 

  66. Morgan, J. E.; Phillips, L. F. and Schiff, H. I. (1962) Studies of Vibrationally Excited Nitrogen Using Mass Spectrometric and Calorimetric-Probe Techniques, Discuss. Faraday Soc 33, 118–127.

    Article  Google Scholar 

  67. Morgan, J. E. and Schiff H. I. (1963) The study of vibrationally excited N2 molecules with the aid of an isothermal calorimeter, Can. J. Chem. 41, 903–912.

    Article  Google Scholar 

  68. Black, G.; Sharpless, R. L. and Slanger, T. G. (1973) Measurements of vibrationally excited molecules by Raman scattering. I The yield of vibrationally excited nitrogen in the reaction N + NO → N2+ O, J. Chem. Phys. 58, 4792–4797.

    Article  ADS  Google Scholar 

  69. Gilbert, M.; Aguilar, A.; Gonzalez, M.; Mota, F. and Sayós, R. (1992) Dynamics of the N(4Su) + NO(X2II) → N2(X1Σ +g ) + O(3Pg) atmospheric reaction on the 3A“ ground potential energy surface. I. Analytical potential energy surface and preliminary quasiclassical trajectory calculations, J. Chem. Phys. 97, 5542–5552.

    Article  ADS  Google Scholar 

  70. Gilibert, M.; Aguilar, A.; Gonzalez, M. and Sayós, R. (1993) Dynamics of the N(4Su) + NO(X2II) → N2(X1Σ +g ) + O(3Pg) atmospheric reaction on the 3A“ ground potential energy surface. II. The effect of reagent translational, vibrational and rotational energies, J. Chem. Phys. 99, 1719–1733.

    Article  ADS  Google Scholar 

  71. Aguilar, A.; Gilibert, M.; Giménez, X.; González, M. and Sayós, R. (1995) Dynamics of the N(4S) + NO(X2II) → N2(X1Σ +g ) + O(O3P) atmospheric reaction on the 3A“ ground potential energy surface. III. Quantum dynamical study and comparison with quasiclassical and experimental results J. Chem. Phys. (in press).

    Google Scholar 

  72. Giliben, M.; Gonzalez, M.: Giménez, X.; Sayós, R.; Hijazo, J. and Aguilar, A. (1995) Dynamics of the N(4S) + NO(X2II) → N2(X1Σ +g )+ O(3P) atmospheric reaction on the 3A“ ground potential energy surface. IV. The behaviour with very high rovibrational excitation (manuscript in preparation).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gilibert, M., González, M., Sayós, R., Aguilar, A., Giménez, X., Hijazo, J. (1996). Reactive Cross Sections Involving Atomic Nitrogen and Ground and Vibrationally Excited Molecular Oxygen and Nitric Oxide. In: Capitelli, M. (eds) Molecular Physics and Hypersonic Flows. NATO ASI Series, vol 482. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0267-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0267-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6604-4

  • Online ISBN: 978-94-009-0267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics