Skip to main content

Reactive Vibrational Deexcitation: The N + N2 and O + O2 Reactions

  • Chapter
Molecular Physics and Hypersonic Flows

Part of the book series: NATO ASI Series ((ASIC,volume 482))

Abstract

In recent years it has become increasingly apparent that the characteristics of the gaseous flux around objects flying at hypersonic speed are sensitive to the nature and the efficiency of the involved elementary chemical reactions.[1] [2] [3] This situation is common to the modelling of all complex gas phase processes (e.g. lasers, cold plasmas, ionic sources, etc.[4]). Due to the non-equilibrium nature of these systems the reactive properties relevant to their description are the state-to-state detailed quantum cross sections. Detailed cross sections, in fact, individually depend on the different energetic modes and, therefore, can account for the actual energetic distribution of the components of the gaseous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Park, C.: (1995) Review of finite rate chemistry models for air dissociation and ionization. Nato ASI Molecular Physics and hypersonic flows, Maratea, 62.

    Google Scholar 

  2. Candler, G.V.: (1995) Interfacing nonequilibrium models with computational fluid dynamics methods. Nato ASI Molecular Physics and hypersonic flows, Maratea 72.

    Google Scholar 

  3. Frühauf, H.H.: (1995) Computation of high temperature nonequilibrium flows. Nato ASI Molecular Physics and hypersonic flows, Maratea 7.

    Google Scholar 

  4. Non equilibrium vibrational kinetics, Capitelli, M., Ed., Springer-Verlag, Berlin; (1989) Nonequilibriurn processes in partially ionized gases, Capitelli, M. and Bardsley, J.N., Eds., Plenum, New York.

    Google Scholar 

  5. Johnston, H.S.: (1966) Gas phase reaction theory, Ronald Press, New York.

    Google Scholar 

  6. Laganà, A.: (1987) On the Franck-Condon behavior of the H + Cl2 reaction, J. Chem. Phys., 86, 5523–5533;

    Article  ADS  Google Scholar 

  7. Laganà, A., Garcia, E., and Alvarino, J.M.: (1990) A modelling of accurate reduced-dimensionality quantum probabilities for H(D,T) + C12 reactions, Il nuovo Cimento, 12 D, 1539–1551;

    Article  ADS  Google Scholar 

  8. Laganà, A., Paniagua, M., and Alvarino, J.M.: (1990) Accurate and model collinear reactive probabilities of the Mg + FH reaction, Chem. Phys. Letters, 168, 441–447.

    Article  ADS  Google Scholar 

  9. Garcia, E., Gervasi, O., and Laganà, A.: (1989) Approximate Quantum Techniques for Atom Diatom Reactions, Supercomputer Algorithms for Reactivity, Dynamics and Kinetics of Small Molecules, Laganà, A., Ed., Kluwer, Dordrecht, 271–294;

    Google Scholar 

  10. Laganà, A., Gervasi, O., Baraglia, R., and Laforenza, D.: (1989) Vector and Parallel Restructuring for Approximate Quantum Reactive Scattering Computer Codes, High Performance Computing, Delahyes, J.L., and Gelenbe, E., Eds, North Holland, Amsterdam, 287–298.

    Google Scholar 

  11. Parker, G.A., Pack, R.T and Laganà, A.: (1993) Accurate 3D quantum reactive probabilities of Li + FH. it Chem. Phys. Letters, 202, 75–81;

    Article  ADS  Google Scholar 

  12. Parker, G.A., Laganà, A., Crocchianti, S., Pack, R.T.: (1995) A detailed three dimensional quantum study of the Li + FH reaction. J. Chem. Phys., 102, 1238–1250.

    Article  ADS  Google Scholar 

  13. Baraglia, R., Laforenza, D., Perego, R., Laganà, A., Gervasi, O., Fruscione, M., Stofella, P.: (1991) Porting of reduced dimensionality quantum reactive scattering code on a meiko computing surface, CNR Report 8/20.

    Google Scholar 

  14. Fox, G.C., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D.: (1988) Solving problems on concurrent processors, Prentice Hall, Englewood Cliff.

    Google Scholar 

  15. Baraglia, R., Laforenza, D., Laganà, A.: (1995) Parallelization strategies for a reduced dimensionality calculation of quantum reactive scattering cross sections on a hypercube machine. Lecture Notes in Computer Science, 919, 554–561.

    Article  Google Scholar 

  16. Laganà, A., Garcia, E., and Ciccarelli, L.: (1987) Deactivation of vibrationally excited nitrogen molecules by collision with nitrogen atoms, J. Phys. Chem., 91, 312–314.

    Article  Google Scholar 

  17. Laganà, A., Garcia, E.: (1994) Temperature dependence of N + N2 rate coefficients, J. Phys. Chem., 98, 502–507.

    Article  Google Scholar 

  18. Wright, A.N., Winkler, C.A.: (1968) Active nitrogen, Academic Press, New York.

    Google Scholar 

  19. Laganà, A.: (1992) A rotating bond order formulation of the atom-diatom potential energy surface, J. Chem. Phys., 95, 2216–2217;

    Google Scholar 

  20. Laganà, A., Ferraro, G., Garcia, E., Gervasi, O., and Ottavi, A.: (1992) Potential energy representations in the bond order space, Chem. Phys., 168, 341–348.

    Article  Google Scholar 

  21. Garcia, E., and Laganà, A.: (1995) The largest angle generalization of the rotating bond order potential: the H + H2 and N + N2 reactions, J. Chem. Phys in the press.

    Google Scholar 

  22. Petrongolo, C.: (1988) MRD-CI ground state geometry and vertical spectrum of N2, J. Mol. Struct. Theochem, 175, 215–220;

    ADS  Google Scholar 

  23. Petrongolo, C.: (1989) MRD-CI quartet potential surfaces for the collinear reactions N(4Su) + N2(1Σ +g , A3Σ +g and B3IIg) J. Mol. Struct. Theochem, 202, 135–142;

    Article  Google Scholar 

  24. Varandas, A.J.C., Pais, A.A.C.C.: (1988) A realistic double many-body (DMBE) potential energy surface for the ground state 03 from a multiproperty fit to ab initio calculations, experimental spectroscopy, inelastic scattering, and kinetic isotope thermal rate data, Mol. Phys., 65, 843–860.

    Article  ADS  Google Scholar 

  25. Anderson, S.M., Klein, F.S., Kaufman, F.: (1985) Kinetics of the isotope exchange reaction of 18O with NO and O2 at 298 K, J. Chem. Phys., 83, 1648–1656.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Laganà, A., Riganelli, A., de Aspuru, G.O., Garcia, E., Martinez, M.T. (1996). Reactive Vibrational Deexcitation: The N + N2 and O + O2 Reactions. In: Capitelli, M. (eds) Molecular Physics and Hypersonic Flows. NATO ASI Series, vol 482. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0267-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0267-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6604-4

  • Online ISBN: 978-94-009-0267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics