Skip to main content

The Role of Inelastic Rotational and Vibrational Collisions on Transport Coefficients

  • Chapter
Book cover Molecular Physics and Hypersonic Flows

Part of the book series: NATO ASI Series ((ASIC,volume 482))

Abstract

The Wang Chang-Uhlenbeck theory of rate coefficients for relaxation and transport (thermal conductivity, viscosity, self-diffusion) for molecular gases are considered. Firstly, the formal results of the theory are discussed for correctness in comparison with the proper theory of transport coefficients. Then some earlier published calculational results for a nitrogen gas using a Monte Carlo treatment of the bimolecular collisions following classical dynamics and also semiclassical dynamics are considered particularly for the meaning of the contribution from the vibrational degrees of freedom to the transport coefficients at high temperatures. These calculations were partly carried out for rotationally, non-vibrating molecules and partly for fully coupled rotational and vibrational degrees of freedom. From the collisional treatment one realised that the first-order treatment of the Wang Chang-Uhlenbeck theory is useful for calculations of transport coefficients for temperatures where the rigid rotor model is appropriate. The results at higher temperatures indicate that inclusion of a quantum mechanical treatment of vibration or eventually higher order terms in the Wang Chang-Uhlenbeck theory is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang Chang, C,S., Uhlenbeck, G.E. and de Boer, J. (1964), The heat conductivity and viscosity of polyatomic gases, in J. de Boer and G.E. Uhlenbeck (eds.), Studies in Statistical Mechanics, vol. II, North-Holland Publishing Company, Amsterdam, pp. 242–268.

    Google Scholar 

  2. Hirschfelder, J.O. (1957) Heat conductivity in polyatomic or electronic excited gases, II, J. Chem. Phys. 26, 282–285.

    Article  ADS  Google Scholar 

  3. Eucken, A. (1913) Über das Wärmeleitvermöge, die specifische Wärme und die innere Reibung der Gase, Phys. Z. 14, 324–332.

    Google Scholar 

  4. Waldmann, L. (1957) Die Boltzmann-Gleichung für Gase mit rotierende Molekülen, Z. Natuiforschung A 12, 660–662.

    ADS  MATH  Google Scholar 

  5. Snider, R.F. (1960) Quantum-Mechanical modified Boltzmann equation for degenerated internal states, J. Chem. Phys. 32, 1051–1060.

    Article  MathSciNet  ADS  Google Scholar 

  6. Nyeland, C., Poulsen, L.L. and Billing, G.D. (1984) Rotational relaxation and transport coefficients for diatomic gases: Computations on nitrogen, J. Phys. Chem. 88, 1216–1221

    Article  Google Scholar 

  7. Nyeland, C. and Billing. G.D. (1988) Transport coefficients of diatomic gases: Internal-State analysis for rotational and vibrational degrees of freedom, ibid 92, 1752–1755.

    Google Scholar 

  8. Billing, G.D. and Wang, L. (1992) Semiclassical calculations of transport coefficients and rotational relaxation of nitrogen at high temperatures, J. Phys. Chem. 96, 2572–2575.

    Article  Google Scholar 

  9. Berns, R.M. and van der Avoird, A. (1980) N2-N2, interaction potential from ab initio calculations, with application to the structure of (N2)2, J. Chem. Phys. 72, 6107–6116.

    Article  ADS  Google Scholar 

  10. Billingsley, F.P. and Krauss, M. (1974) Quadrupole moment of CO, N2, and NO+, J. Chem. Phys. 60, 2767–2772.

    Article  ADS  Google Scholar 

  11. Ling, M.S.H. and Rigby, M. (1984) Towards an intermolecular potential in nitrogen, Mol. Phys. 51, 855–882.

    Article  ADS  Google Scholar 

  12. Reuter, D. and Jennings, D.E. (1986) The v =1 ← 0 quadrupole spectrum of N2, J. Mol. Spectrosc. 115, 294–304.

    Article  ADS  Google Scholar 

  13. van den Oord, R.J. and Korving, J (1988) The thermal conductivity of polyatomic molecules, J. Chem. Phys. 89, 4333–4338.

    Article  ADS  Google Scholar 

  14. Maitland, G.C., Mustafa, M., Wakeham, W.A. and McCourt, F.R.W. (1987) An essentially exact evaluation of transport cross sections for a model of He-N2 interaction, Mol. Phys. 61, 359–387.

    Article  ADS  Google Scholar 

  15. Dickinson, A. and Lee, M.S. (1986) Classical trajectory calculations for anisotropy dependent cross-sections for He-N2 mixtures, J. Phys. B 19, 3091–3107.

    ADS  Google Scholar 

  16. Billing, G.D. (1984) The semiclassical treatment of molecular roto-vibrational energy transfer Comput. Phys. Rep. 1, 237–296.

    Article  ADS  Google Scholar 

  17. Touloukain, Y.S. (ed.) ( 1970, 1973) Thermophysical Properties of Matter, Vol. 3, 11, Plenum Press, New York.

    Google Scholar 

  18. Vogel, E. (1984) Präzisionsmessungen des Viskositätskoeffizienten von Stickstoff und den Edelgasen zwischen Raumtemperatur und 650 K, Ber. Bunsen-Ges. Phys. Chem. 88, 997–1002.

    Google Scholar 

  19. Shashkov, A.G. Abraminko, T.N. and Aleininikova, V.I. (1985) J. Engineering Phys. (Engl. Transi.) 49,83–93.

    Google Scholar 

  20. Haarman, J.W. (1973) Thermal conductivity measurements of He, Ne, Ar, Kr, N2 and CO2 with a transient hot-wire method, in J. Kestin, (ed.) ‘Transport phenomena–1973’, Am. Inst. Phys. Conf. Proc. 11, 193–198.

    Google Scholar 

  21. Monchick, L. and Mason, E.A. (1961) The transport properties of polar gases J. Chem. Phys. 35, 1676–1697.

    Article  ADS  Google Scholar 

  22. Monchick, L., Peireira A.N.G. and Mason, E.A. (1965) Heat conductivity of polyatomic and polar gases and gas mixtures, J. Chem. Phys. 42, 3241–3256.

    Article  ADS  Google Scholar 

  23. For a recent review, see McCourt, F.R.W., Beenakker, J.J.M., Köhler, W.E. and Kuščer, I. (1990) Nonequilibrium Phenomena in Polyatomic Gases, Clarendon Press, Oxford.

    Google Scholar 

  24. Nyeland, C. and Mason, E.A. (1967) Adiabatic excitation transfer in gases: Effects on transport, Phys. Fluids. 5, 985–991.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nyeland, C. (1996). The Role of Inelastic Rotational and Vibrational Collisions on Transport Coefficients. In: Capitelli, M. (eds) Molecular Physics and Hypersonic Flows. NATO ASI Series, vol 482. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0267-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0267-1_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6604-4

  • Online ISBN: 978-94-009-0267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics