Skip to main content

Adsorption of Cations on Colloidal Oxide Particles. Cobalt Ions on Hematite

  • Chapter
Fine Particles Science and Technology

Part of the book series: NATO ASI Series ((ASHT,volume 12))

  • 529 Accesses

Abstract

Adsorption of ions in colloidal suspensions plays an important role in science, technology, and every day life. In the cooling water system of a nuclear power plant, depending on the physico-chemical conditions, radioactive cobalt is either dissolved or sorbed on colloidal magnetite and hematite corrosion products particles [1]. The extent of the contamination of surface waters due to a uranium mine and mill greatly depends on the content of natural colloids in these waters to which uranium, radium, and other members in the decay chain are attached [2]. Release of chromium from leather industry is subject of similar phenomena [3]. There is no need to mention that the transport of other pollutants and their uptake by living organisms is governed by sorption equilibria at suspended particles of naturally occurring colloids, mainly being hydrated oxides [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Honda, T., Izumiya, M., and Minato A. (1984) Radiation buildup on stainless steel in a boiling water reactor environment, Nucl. Technol, 64, 35–42.

    CAS  Google Scholar 

  2. Beneš, P., Borovec, Z., and Strejc P. (1985) Interaction of radium with freshwater sediments and their mineral compounds, J. Radioanal. Nucl. Chem., 89, 339–351.

    Article  Google Scholar 

  3. Musić, S., Ristić, M., and Tonković M. (1986) Sorption of chromium(VI) on hydrous iron particles, Z. Wasser-Abwasser-Forsch., 19, 186–196.

    Google Scholar 

  4. Lieser, K.H., Ament, A., Hill, R., Singh, R.N., Stigl, U., and Thybusch, B. (1990) Colloids in groundwater and their influence on migration of trace elements and radionuclides, Radiochim. Acta, 49, 83–100.

    CAS  Google Scholar 

  5. Dzombak, D.A., and Morel, F.M.M. (1989) Surface Complexation Modeling, A Wiley-Interscience Publication, John Wiley & Sons, New York, USA.

    Google Scholar 

  6. Kallay, N. and Žalac, S. (1994) Enthalpy of interfacial charging of metal oxide/water systems, Croat. Chim. Acta 67, 467–479.

    CAS  Google Scholar 

  7. Kobal, I., Hesleitner, P., and Matijević, E. (1988) Adsorption at solid/liquid interfaces. 6. Interactions of Co2+ ions with spherical hematite particles, Colloids Surfaces, 33, 167–174.

    Article  CAS  Google Scholar 

  8. Hesleitner, P., Babić, D., Kallay, N., and Matijević E. (1987) Adsorption at solid/solution interfaces. 3. Surface charge and potential of colloidal hematite, Langmuir, 3, 815.

    Article  CAS  Google Scholar 

  9. Morel, F.M.M., Yeasted, J.V., and Westall, J.C. (1981) Adsorption models: a mathematical analysis in the framework of general equilibrium calculation in Adsorption of Inorganics at Solid-Liquid Interfaces (M.A. Anderson and A.J.Rubin, Eds.), Ann Arbor Science, Michigan, USA, pp. 263.

    Google Scholar 

  10. Tewari, P.H., Campbell, A.B., and Lee, W. (1972) Adsorption of Co2+ by oxides from aqueous solutions, Can. J. Chem., 50, 1642–1648.

    Article  CAS  Google Scholar 

  11. Hayes, K.F., and Leckie, J.O. (1987) Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interface, J. Colloid Interface Sci. 115, 564–572.

    Article  CAS  Google Scholar 

  12. Blesa., M.A., and Kallay, N. (1988) The metal oxide–electrolyte solution interface revisited, Adv. Colloid Interface Sci., 28, 111–134.

    Article  CAS  Google Scholar 

  13. Westall, J.C., and Morel, F.M.M. (1977) FITEQL: A general algorithm for the determination of metal-ligand complex stability constants from experimental data, Technical Note 19, Ralph M. Parsons Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

    Google Scholar 

  14. Westall, J.C., Zachary, J.L., and Morel, F.M.M. (1976) MINEQL: A computer program for the calculation of chemical equilibrium composition of aqueous systems, Technical Note 18, Ralph M. Parsons Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

    Google Scholar 

  15. Westall, J.C. (1982) FITEQL: A program for the determination of chemical equilibrium constants from experimental data, Technical Report, Chemistry Department, Oregon State University, Corvallis, Oregon, USA.

    Google Scholar 

  16. Trkov, A., Ogrinc, N., and Kobal, I. (1992) Modeling surface complexation at the colloid/electrolyte interface, Computers Chem., 16, 341–344.

    Article  Google Scholar 

  17. Schindler, P.W. (1981) Surface complexes at the oxide/water interfaces in Adsorption of Inorganics at Solid-Liquid Interfaces (M.A. Anderson and A.J.Rubin, Eds.), Ann Arbor Science, Michigan, USA, pp.l.

    Google Scholar 

  18. Davis, J.A., and Leckie, J.O. (1978) Surface ionization and complexation at the oxide/water interface. II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions, J.Colloid Interface Sci., 67, 90–107.

    Article  CAS  Google Scholar 

  19. Yates, D.E., Levine, S., and Healy T.W. (1974) Site-binding model of the electrical double layer at the oxide/water interface J.Chem.Soc. Faradayl, 70, 1807.

    Article  CAS  Google Scholar 

  20. Davis, J.A., James, R.O., and Leckie, J.O. (1978) Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes J.Colloid Interface Sci., 63, 480–499.

    Article  CAS  Google Scholar 

  21. Sprycha, R., Kosmulski, M., and Szczypa, J. (1989) Ionic components of charge on oxides, J. Colloid Interface Sci., 128, 88–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ogrinc, N., Kobal, I., Matijević, E., Kallay, N. (1996). Adsorption of Cations on Colloidal Oxide Particles. Cobalt Ions on Hematite. In: Pelizzetti, E. (eds) Fine Particles Science and Technology. NATO ASI Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0259-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0259-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4047-8

  • Online ISBN: 978-94-009-0259-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics