Skip to main content

Possibilities and Limitations in the Growth of Mixed Metal Oxide Particles from Aqueous Media

  • Chapter
Fine Particles Science and Technology

Part of the book series: NATO ASI Series ((ASHT,volume 12))

Abstract

Synthesis of precursors for mixed metal oxides can be achieved by coprecipitation from aqueous media. This procedure offers clear advantages over traditional solid state reactions. There are however important limitations:

  1. (i)

    The nucleation and growth kinetics usually lead to inhomogeneous indepth profiles of the concentration of the metal ions.

  2. (ii)

    The mixing of a sparingly soluble metal oxide with a readily soluble one requires either the coprecipitation of basic salts (carbonates or oxalates), or the alteration of the solubility behavior. Changes in solubility can be achieved by using oxidative or reductive precipitation or by using complexants, including hydroxide ions.

  3. (iii)

    Mixed oxides in contact with water may be corroded selectively, through the leaching of the more soluble component.

Examples of the above problems shall be given; the chosen systems are mixed Cu-Zn oxides, YBa2Cu3O7-x and barium hexaferrite.

Mixed copper–zinc oxides: Precursors were synthesized by homogeneous alkalinization with urea. The nature of the solids depends on the ratio Cu:Zn; only when this ratio is larger than 10:1 the precursors evolve smoothly to Zn-substituted tenorite. Good spherical monodisperse solids can be prepared. Other detected phases are aurichalcite and Zn-substituted malachites.

YBa 2 Cu 3 O 7-x : In contact with water, barium and yttrium are selectively leached, whereas copper oxide is reprecipitated. The kinetics of the evolution depend on the composition of the aqueous medium.

BaO.6Fe 2 O 3 : Precursors for this oxide can be prepared from strongly alkaline ferrate(VI) solutions, by reductive coprecipitation of Fe2O3 + Ba(OH)2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matijević, E. (1990) Preparation of well defined ceramic powders, in D.P. Vskokovic, H. Palmour, III, and R.M. Spriggs (eds.), Science of sintering, Plenum Press, New York, pp. 101–115.

    Google Scholar 

  2. Matijević, E. (1994) Uniform inorganic colloid dispersions. Achievements and challenges, Langmuir 10, 8–16.

    Article  Google Scholar 

  3. Kallay, N., Fischer, I, and Matijević, E. (1985) A method for continuous preparation of uniform colloidal hematite particles, Colloids Surf. 13, 145–149.

    Article  CAS  Google Scholar 

  4. Her, Y.S., Matijević, E. and Wilcox, W.R. (1990) Continuous precipitation of monodispersed yttrium basic carbonate powders, Powder Technol. 61, 173–177.

    Article  CAS  Google Scholar 

  5. Gherardi, P. and Matijević, E. (1988) Homogeneous precipitation of spherical colloidal barium titanate particles, Colloids Surf. 32, 257–274.

    Article  CAS  Google Scholar 

  6. Dutta, P.K. and Gregg, J.R. (1992) Hydrothermal synthesis of tetragonal barium titanate, Chem. Mater. 4, 843–846.

    Article  CAS  Google Scholar 

  7. Segall, R.L., Myhra, S., Smart, R.St.C. and Turner, P.S. (1984) Evaluation of critical properties of synroc for disposal of high level radioactive waste, NERDDP EG84/285, Australian Govt. Publ. Office, Camberra.

    Google Scholar 

  8. Ringwood, A.E., Kesson, S.E., Reeve, K.D., Levins, D.M. and Ramm, E.J. (1988) Synroc, in W. Lutze and R.C. Ewing (eds.), Radioactive waste forms for the future, North-Holland Physics Publishing, Amsterdam, pp. 223–334.

    Google Scholar 

  9. Turner, P.S, Jones, C.F., Myhra, S., Neall, F.B., Pham, D.K. and Smart, R. St.C. (1989) Dissolution mechanisms of oxides and titanate ceramics–Electron microscope and surface analytical studies, in L.-C. Dufour, C. Monty and G. Petot-Ervas (eds.), Surfaces and interfaces of ceramic materials, Kluwer Academic Publishers, Dordrecht, pp. 663–690.

    Google Scholar 

  10. Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures, Geological Survey Bulletin 1452, U.S. Govt. Publ. Office, Washington DC.

    Google Scholar 

  11. Burl, A.J., Parsons, R. and Jordan, J. (1985) Standard potentials in aqueous solutions, Marcel Dekker, New York.

    Google Scholar 

  12. Candal, R.J., Blesa, M.A. and Regazzoni, A.E. (1995) The attack of YBa2Cu3O6.8 by acidic aqueous solutions, submitted.

    Google Scholar 

  13. Blesa, M.A., Morando, P.J. and Regazzoni, A.E. (1994) Chemical dissolution of metal oxides, CRC Press, Boca Raton, Florida.

    Google Scholar 

  14. Pham, D.K., Ru-Peng, Z., Fielding, P.E., Myhra, S., and Turner, P.S. (1991) The degradation of YBa2Cu3O7 resulting from exposure to wet and dry steam, J. Mater. Res. 9, 1148–1155.

    Article  Google Scholar 

  15. Zhou, P.-J., Riley, D.R. and McDevitt, J.T. (1993) Relative corrosion reactivity and surface microstructure of YBa2Cu3O7-x , samples with different oxygen contents, Chem. Mater. 5, 361–365.

    Article  CAS  Google Scholar 

  16. Stacey, M.H. and Shannon, M.D. (1985) The decomposition of Cu-Zn hydroxycarbonate solid solutions, in P. Barret and L.-C. Dufour (eds.), Reactivity of solids, Elsevier, Amsterdam, pp. 713–718.

    Google Scholar 

  17. Baes, Jr., C.F. and Mesmer, R.E. (1976) The hydrolysis of cations, John Wiley & Sons, New York.

    Google Scholar 

  18. Porta, P., De Rossi, S., Ferraris, G., Lo Jacono, M., Minelli, G. and Moretti, G. (1988) Structural characterization of malachite-like coprecipitated precursors of binary CuO-ZnO catalysts, J. Catal. 109, 367–377.

    Article  CAS  Google Scholar 

  19. Waller, D. Stirling, D. Stone, F.S. and Spencer, M.S. (1989) Copper-zinc oxide catalysts: activity in relation to precursor structure and morphology, Faraday Discuss. Chem. Soc. 87, 107–120.

    Article  CAS  Google Scholar 

  20. Pollard, A.M., Spencer, M.S., Thomas, R.G. and Williams, P.A. (1992) Georgeite and azurite as precursors in the preparation of co-precipitated copper/zinc oxide catalysts, Appl. Catal. A 85, 1–11.

    Article  CAS  Google Scholar 

  21. Soler-Illia, G.J. de A.A., Candal, R.J., Blesa, M.A. and Regazzoni, A.E. (1994) Coprecipitation of mixed copper-zinc hydroxycarbonate particles, I X Argentine Meeting of Chemical Physics, San Luis, Argentina.

    Google Scholar 

  22. Candal, R.J., Regazzoni, A.E. and Blesa, M.A. (1992) Precipitation of copper(H) hydrous oxides and copper(II) basic salts, J. Mater. Chem. 2, 657–661.

    Article  CAS  Google Scholar 

  23. Candal, R.J., Regazzoni, A.E. and Blesa, M.A. (1992) Precipitation of monodispersed mixed copper-gadolinium basic carbonate particles, Colloids Surf. A 79, 191–198.

    Article  Google Scholar 

  24. Regazzoni, A.E. and Matijevié, E. (1982) Formation of spherical colloidal nickel ferrite particles as model corrosion products, Corrosion 38, 212–218.

    Article  CAS  Google Scholar 

  25. Tamura, H. and Matijevic, E. (1982) Precipitation of cobalt ferrites, J. Colloid Interface Sci. 90, 100–109.

    Article  CAS  Google Scholar 

  26. Domingo-Pascual, C., Rodríguez-Clemente, R. and Blesa, M.A. (1991) The pathways to spinel iron oxides by oxidation of iron(II) in basic media, Mat. Res. Bull. 26, 47–55.

    Article  Google Scholar 

  27. Domingo-Pascual, C., Rodríguez-Clemente, R. and Blesa, M.A. (1993) Nature and reactivity of intermediates in the autooxidation of iron(II) in aqueous acid media, Solids State Ionics 59, 187–195.

    Article  Google Scholar 

  28. Domingo-Pascual, C., Rodríguez-Clemente, R. and Blesa, M.A. (1993) Kinetics of oxidative precipitation of iron oxide particles, Colloids Surf. A 79, 177–189.

    Article  Google Scholar 

  29. Regazzoni, A.E. and Matijević, E. (1984) Interactions of metal hydrous oxides with chelating agents. IV Dissolution of nickel ferrite in EDTA solutions, Corrosion 40, 257–261.

    Article  CAS  Google Scholar 

  30. Domingo-Pascual, C. (1992) Synthesis and morphological characterization of magnetite (Fe3O4), goethite (α-FeOOH) and lepidocrosite (γ -FeOOH) and lepidocrosite (γ -FeOOH) particles obtained by oxidation of Fe(II), Ph.D. thesis, Universidad de Barcelona, Spain.

    Google Scholar 

  31. Jacobo, S. and Blesa, M.A. (1995) work in progress.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Blesa, M.A., de A.A. Soler-Illia, G.J., Candal, R.J., Regazzoni, A.E. (1996). Possibilities and Limitations in the Growth of Mixed Metal Oxide Particles from Aqueous Media. In: Pelizzetti, E. (eds) Fine Particles Science and Technology. NATO ASI Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0259-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0259-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4047-8

  • Online ISBN: 978-94-009-0259-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics