Skip to main content

Electro-Optic Characterisation of Anisotropic Sub-Micron Particles

  • Chapter
Fine Particles Science and Technology

Part of the book series: NATO ASI Series ((ASHT,volume 12))

  • 521 Accesses

Abstract

Optical anisotropy can be manifest for colloidal particles through a number of phenomena [1]. Birefringence, dichroism and light scattering arise from variability of refractive index, absorption coefficient or geometry associated with the different principal axes of the particles. Furthermore, anisotropic particles are generally anisodiametric, and are most conveniently represented by the principal shapes of spheroids of revolution. Whereas many of the theories which account either for colloidal behaviour or for the methods used to characterise the same assume spherical models [2,3], this is far from an adequate description of real systems. Commercially important colloids are continuously being exploited for their needle-like, discotic, tabular or aggregated nature. Furthermore, naturally occurring colloids are seldom of a single monodisperse size species and samples are engineered for specific narrow, broad or truncated size distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stoylov, S.P. (1991) Colloid Electro-Optics, Academic Press, London.

    Google Scholar 

  2. Barth, H.G. (Ed.) (1984) Modern Methods of Particle Size Analysis, Wiley Interscience, New York.

    Google Scholar 

  3. Allen, T. (1990) Particle Size Measurement, Chapman & Hall, London.

    Google Scholar 

  4. Peterlin, A. and Stuart, H.A. (1939) Über die bestimmung der grösse und form, sourie der elektrischen, optisdien und magnetischen anisotropie, Z. Phys. 112, 129 - 147.

    Article  CAS  Google Scholar 

  5. O’Konski, C.T., Yoshioka, K., and Orttung, W.H. (1959) Determination of electric and optical parameters from saturation of electric birefringence in solutions, J. Phys. Chem. 63, 1558 - 1565.

    Google Scholar 

  6. Benoit, H. (1949) Theorie de l’effet Kerr d’und solution soumise à une impulsion electrique rectangulaire, Compt. Rend. 229, 30–32.

    Google Scholar 

  7. Jennings, B.R., Foweraker, A.R. and Morris, V.J. (1978) Particle size distributions from transient electric birefringence data, Adv. Mol. Relxn. Proc. 12, 211–220.

    Google Scholar 

  8. Fredericq, E. and Houssier, C. (1973), Electric Dichroism and Electric Birefringence, Oxford Univ. Press, London.

    Google Scholar 

  9. Oaldey, D.M., Jennings, B.R., Waterman, D.R. and Fairey, R.C. (1982) An electro-optic birefringence fine-particle sizer, J. Phys. E. (Sci. Instr.) 15, 1077 - 1082.

    Article  CAS  Google Scholar 

  10. Tsuji, K., Watanabe, H. and Yoshioka, K. (1976) A numerical method of obtaining the relaxation distribution function from decay curves, Adv. in Mol. Relxn. Proc. 8, 49–62.

    Article  CAS  Google Scholar 

  11. Ingram, P., and Jerrard, H.G. (1963) Study by the Kerr effect of the action of enzymes on macromolecules, Brit. J. Appl. Phys. 14, 572–574.

    Article  CAS  Google Scholar 

  12. Penrrin, F. (1934) Mouvement Brownien d’un Ellipsoide J. Phys. Rad. Ser. vii, 497–516.

    Google Scholar 

  13. Watson, R.M.J. and Jennings, B.R. (1992) Polydisperse size data from single electric birefringence transients, Powder Technology 72, 63–69.

    Article  CAS  Google Scholar 

  14. Hastings, N.A.J. and Peacock, J.B. (1975) Statistical Distributions, Butterworth & Co., London.

    Google Scholar 

  15. Parslow, K. and Jennings, B.R. (1988) Particle size measurement; the equivalent spherical diameter, Proc. Royal Soc. A419, 137–149.

    Google Scholar 

  16. Wippler, C. (1954) Elude théorique de la diffusion de la lumiere par des sols de batonnets orientés, J.Chim. Phys 51, 122 - 128.

    CAS  Google Scholar 

  17. Stoylov, S.P. (1967) Influence of electric fields on the light scattering by plate-like particles in an electric field, Izv. Inst. Fizkhim 6, 79 - 86.

    Google Scholar 

  18. Isihara, A., Koyama, R., Yamada, N. and Nishioka, A. (1955) Effect of electric field on light scattering of solutions of polar chain polymers, J. Polymer Sci. 17, 341–349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jennings, B.R. (1996). Electro-Optic Characterisation of Anisotropic Sub-Micron Particles. In: Pelizzetti, E. (eds) Fine Particles Science and Technology. NATO ASI Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0259-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0259-6_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4047-8

  • Online ISBN: 978-94-009-0259-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics