Skip to main content

Thermodynamics of the Metal Oxide-Electrolyte Interface Charging

  • Chapter
Fine Particles Science and Technology

Part of the book series: NATO ASI Series ((ASHT,volume 12))

  • 527 Accesses

Abstract

Most of the properties of colloidal dispersions are determined by equilibria in the electrical interfacial layer. For example, the stability of a colloidal system or adhesion of particles depends on the electrostatic potential at the onset of diffuse region of the interfacial layer. This potential is a result of several interactions of ions with active surface groups. Important systems in nature and technology are aqueous dispersions of metal oxides. Amphoteric surface groups interact with H+ ions causing development of interfacial charge and electrostatic potential. Several methods are used for characterization of these systems; among them, adsorption measurement and electrokinetics are found to be useful tools [1]. More recently, the equilibria in the interfacial layer were investigated by calorimetry [2–11]. An attempt was made to evaluate the enthalpy of reactions leading to surface charge. The problems in doing so are related to several simultaneous reactions taking place at the interface, so one can hardly distinguish different contributions to the overall enthalpy. An additional problem is the electrostatic effect on the enthalpy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kallay, N., Hlady, V., Jednačak-Bišćan, J. and Milonjić, S. (1993) Techniques for the Study of Adsorption from Solutions, Chap. 2 in B.W. Roulier and R.C. Baetzold (eds.), Investigation of Surfaces and Interfaces, Part A, Vol. 9 of Physical Methods in Chemistry, Interscicnce Publishers, A Wiley-Interscience Publication, John Wiley & Sons, New York

    Google Scholar 

  2. Machesky, M.L and Anderson, M.A. (1986) Calorimetric acid-base titration: of aqueous goethite and rutile suspensions, Langmuir 2, 582–587.

    Google Scholar 

  3. Machesky, M.L and Jacobs, P.F. (1991) Titration calorimetry of aqueous alumina suspensions. L Results and comparison with similar studies, Colloids Surf. 53, 297–314.

    Article  CAS  Google Scholar 

  4. Wieser, K. A. and Dobiaš, B. (1988) Exchange enthalpies of H+ and OH- adsorption on minerals with different characters of potential-determining ions, J. Colloid Interface Sci. 122, 171–177.

    Article  Google Scholar 

  5. de Keizer, A., Fokkink, LGJ. and Lykiema, J. (1990) Thermodynamics of proton charge formation on oxides. Microcalorimetry, Colloids Surf. 49, 149–163.

    Article  Google Scholar 

  6. Machesky, M.L and Jacobs, P.F. (1991) Titration calorimetry of aqueous alumina suspensions. IL Discussion of enthalpy changes with pH and ionic strength, Colloids Surf. 53, 315–328.

    Article  CAS  Google Scholar 

  7. Denoyel, R., Durand, G., Lafuma, F. and Audebert, R. (1989) Adsorption of cationic polyelectrolytes onto montmorillonite and silica: A microcalorimetric study of their conformation, J. Colloid Interface Sci. 139, 281–290.

    Article  Google Scholar 

  8. Partyka, S., Lindheimer, M., Zaini, S., Keh, E. and Brun, B. (1986) Improved calorimetric method to investigate adsorption processes from solutions onto solid surfaces, Langmuir 2, 101–105.

    Article  CAS  Google Scholar 

  9. Partyka, S., Rudzinski, W., Brun, B. and Clint, J.H. (1989) Calorimetric studies of adsorption of anionic surfactants onto alumina, Langmuir 5, 297–304.

    Article  CAS  Google Scholar 

  10. Noll, L.A. (1987) Adsorption calorimetry of surfactant interaction with minerals, Colloids Surf. 26, 43–54.

    Article  CAS  Google Scholar 

  11. Machesky, M.L, Bischoff, B.L. and Anderson, M.A. (1989) Calorimetric investigation of anion adsorption onto goethite, Environ. Sci. Tehnol. 23, 580–587.

    Article  CAS  Google Scholar 

  12. Kallay, N., Žalac, S. and Štefanić, G. (1993) Enthalpies of Reactions at Metal Oxide Aqueous Interface, Langmuir 9, 3457–3460.

    Article  CAS  Google Scholar 

  13. Kallay, N., Žalac, S., Čulin, J., Bieger, U., Pohlmeier, A. and Narres, H.D. (1994) Thermochemistry and adsorption equilibria at hematite-water interface, Progr. Colloid & Polymer Sci. 95, 108–112.

    Article  CAS  Google Scholar 

  14. Kallay, N. and Žalac, S. (1994) Enthalpy of interfacial charging of metal oxide/water systems, Croat. Chem. Acta 67, 467–479.

    CAS  Google Scholar 

  15. Žalac, S. and Kallay, N. (submitted) Determination of electrostatic contribution to enthalpy of charging at metal oxide/electrolyte interface, Croat. Chem. Acta

    Google Scholar 

  16. Yates, D. E., Levine, S. and Healy, T.W. (1974) Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans I 70, 1807–1818.

    Article  CAS  Google Scholar 

  17. Dzombak, D.A. and Morel, F.M.M. (1990) Surface Complexation Modeling, A Wiley-Jnterscieace Publication, John Wiley & Sons, New York.

    Google Scholar 

  18. Bolt, G.H. and van Riemsdijk, V.H. (1982) B: Physico-Chemical Models, in G.H. Bolt (ed.), Soil Chemistry, Elsevier, Amstrerdam.

    Google Scholar 

  19. van Riemsdijk, V.H., Bolt, G.H., Koopal, L.K. and Blaakmeer, J. (1986) Electrolyte adsorption on heterogeneous surfaces: Adsorption models, J. Colloid Interface Sci. 109, 219–228.

    Article  Google Scholar 

  20. Kelley, N. and Babić, D. (1986) Adsorption at solid/solution interfaces II. Surface charge and potential of spherical colloidal titanic, Colloids Surf. 19, 375–386.

    Google Scholar 

  21. Kallay, N. and Tomid, M. (1988) Association of oounterions with adsorbed potential-determining ions at a solid/solution interface. 1. Theoretical analysis, Langmuir 4, 559–564.

    Article  CAS  Google Scholar 

  22. Torrić, M. and Kelley, N. (1988) Association of couinerions with adsorbed potential-determining ions at a solid/solution interface. 2. Double layer equilibria metal oxide interface, Langmuir 4, 565–569.

    Article  Google Scholar 

  23. Kelley, N. Spryobs, R. Tomić, M. Žalac, S. and Torbić Ž. (1990) Some controversies in the understanding of equilibria in electrical interfacial layer, Croat. Chem. Acta. 63, 467–487.

    Google Scholar 

  24. Hesleitner, P., Babić, D., Kallay, N. and Matijević, E. (1987) Adsorption at solid/solution interfaces. 3. Surface charge and potential of colloidal hematite, Langmwir 3, 815–820.

    Article  CAS  Google Scholar 

  25. Lyklema, J. (1984) Points of zero charge in the presence of specific adsorption, J. Colloid Interface Sci. 99, 109–117.

    Article  CAS  Google Scholar 

  26. Hall, D.G. (1988) A thermodynamic analysis of common intersection points in potentiometric titration studies of solid surfaces, J. Chem. Soc. Faraday Trans I 84, 2227–2240.

    Article  CAS  Google Scholar 

  27. Noh, J.S. and Schwarz, J.A. (1989) Estimation of the point of zero charge of simple oxides by mus titration, J. Colloid Interface Sci. 130, 157–164.

    Article  CAS  Google Scholar 

  28. Žalac, S. and Kelley, N. (1992) Application of mass titration to the point of zero charge determination, J. Colloid Interface Sci. 149, 233–240.

    Article  Google Scholar 

  29. Kelley, N., Tobie Ž., Barouch, K and Jednačak-Bišæan, J. (1987) The determination of isoelectric point for metallic surfaces, J. Colloid Interfac Sci. 118, 431–435.

    Google Scholar 

  30. Berube, Y.G. and de Bruyn, P.L (1968) Adsorption at the rutile-solution interface. L Thermodynamic and experimental study, J. Colloid Interface Sci. 27, 305–318.

    Article  CAS  Google Scholar 

  31. Fokkink, LGJ., de Keiser, A. and Lyklema, J. (1989) Temperature dependence of the electrical double layer on oxides: Rutile and hematite, J. Colloid Interface Sci. 127, 116–131.

    Article  CAS  Google Scholar 

  32. Fokkink, L.GJ., de Keizer, A. and Lyklema, J. (1990) Temperature dependance of cadmium adsorption on oxides. L Experimental observation and model analysis, J. Colloid Interface Sci. 135, 118–131.

    Article  CAS  Google Scholar 

  33. Kallay, N., Žalac, S, Kovačeviæ, D., Pobineier, A. and Schwuger, M., to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kallay, N., Žalac, S., Kovačević, D. (1996). Thermodynamics of the Metal Oxide-Electrolyte Interface Charging. In: Pelizzetti, E. (eds) Fine Particles Science and Technology. NATO ASI Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0259-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0259-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4047-8

  • Online ISBN: 978-94-009-0259-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics