Skip to main content

Multi-Species Reactive Transport Modelling

  • Chapter
Distributed Hydrological Modelling

Part of the book series: Water Science and Technology Library ((WSTL,volume 22))

  • 750 Accesses

Abstract

A species transported through the subsurface is either reactive or non-reactive (conservative). Transport codes for non-reactive species were discussed in Chapter 3. When a reactive species is transported through the subsurface it may undergo chemical and microbiological processes that will retard and transform the species. In short, these types of processes will be called reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abriola, L.M., Modeling contaminant transport in the subsurface: an interdisciplinary challenge, Reviews of Geophysics, Vol. 25(2), pp. 125–134, 1987.

    Article  Google Scholar 

  • Alexander M, and K.M. Scow, Kinetics of biodegradation in soil, Reactions and movement of organic chemicals in soils, Soil Science Society of America Special Publication no. 22, 243-267, 1989.

    Google Scholar 

  • Anderson, M.P., Using models to simulate the movement of contaminants through groundwater flow systems, CRC Critical Reviews in Environmental Control, Vol 9(2), 97–156, 1979.

    Article  Google Scholar 

  • Appelo, C.A.J, and D. Postma, Geochemistry, Groundwater and Pollution, A.A. Balkema, Rotterdam, 536 pp, 1993.

    Google Scholar 

  • Appelo, C.A.J., and A. Willemsen, Geochemical calculations and observations on salt water intrusions, I. A combined geochemical/mixing cell model, J. Hydrol., 94, 313–330, 1987.

    Article  Google Scholar 

  • Baedecker, M.J., I.M. Cozzarelli, R.P. Eganhouse, D.I. Siegel, and P.C. Bennett, Crude oil in a shallow sand and gravel aquifer-III. Biogeochemical reactions and mass balance modeling in anoxic groundwater, Applied Geochemicstry, 8, 569–586, 1993.

    Article  Google Scholar 

  • Bahr, J.M., and J. Rubin, Direct comparison of kinetic and local equilibrium formulations for solute transport affected by surface reactions, Water Resour. Res., 23, 438–452, 1987.

    Article  Google Scholar 

  • Bahr, J.M, Kinetically influenced terms for solute transport affected by heterogeneous and homogeneous classical reactions, Water Resour. Res., 2, 21–34, 1990.

    Article  Google Scholar 

  • Baveye P, and A. Valocchi, An evaluation of mathematical models of the transport of biologically reacting solutes in saturated soils and aquifers, Water Resour. Res., 25(6), 1413–1421, 1989.

    Article  Google Scholar 

  • Bear, J., Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.

    Google Scholar 

  • Bjerg, P.L., H.C. Ammentorp, and T.H. Christensen, Model simulations of a field experiment on cation exchange-affected multicomponent solute transport in a sandy aquifer, J. Contam. Hydrol., 12, 291–311, 1993.

    Article  Google Scholar 

  • Borden, R.C., and P.B. Bedient, Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation 1. Theoretical development, Water Resour. Res., 22(13), 1973–1982, 1986a.

    Article  Google Scholar 

  • Borden, R.C., and P.B. Bedient, Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation 2. Field application, Water Resour. Res., 22(13), 1983–1990, 1986b.

    Article  Google Scholar 

  • Bouwer, E.J., and G.D. Cobb; Modeling of biological processes in the subsurface, Wat. Sci. Tech., 19, 769–779, 1987.

    Google Scholar 

  • Brun, A., E.O. Frind, and P. Engesgaard, A coupled microbiology-geochemistry model for threedimensional groundwater flow, Proceedings of the IAHR/AIRH symposium on transport and reactive processes in aquifers, Zurich, Switzerland, 11-15 April, 1994.

    Google Scholar 

  • Brusseau, M.L., Transport of reactive contaminants in heterogeneous porous media, Reviews of Geophysics, 32(3), 285–313, 1994.

    Article  Google Scholar 

  • Cederberg, G.A., R.L. Street, J.O. Leckie, A groundwater mass transport and equilibrium chemistry model for multi-component systems, Water Resour. Res., 21, 1095–1104, 1985.

    Article  Google Scholar 

  • Celia, M.A., J.S. Kindred, and I. Herrera, Contaminant transport and biodegradation 1. A numerical model for reactive transport in porous media, Water Resour. Res., 25(6), 1141–1148, 1989.

    Article  Google Scholar 

  • Chen, Y-M, L.M. Abriola, P.J.J. Alvarez, P.J. Anid, and T.M. Vogel, Modeling transport and biodegradation of benzene and toluene in sandy aquifer material: comparisons with experimental measurements, Water Resour. Res., 28(7), 1833–1847, 1992.

    Article  Google Scholar 

  • Christensen, T.H., P. Kjeldsen, H-J. Albrecthsen, G. Heron, P.H. Nielsen, P.L. Bjerg, and P.E. Holm, Attenuation of landfill leachate pollutants in aquifers, Critical Reviews in Environmental Science and Technology, 24(2), 119–202, 1994.

    Article  Google Scholar 

  • Christiansen, J.S, Modelling reactive transport in the unsaturated zone, M.Sc. Thesis, Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, 1994.

    Google Scholar 

  • Dance, J.T., and E.J. Reardon, Migration of contaminants in groundwater at a landfill: A case study. 5. Cation migration in the dispersion test, J. Hydrol, 63, 109–130, 1983.

    Article  Google Scholar 

  • Engesgaard, P., and Th.H. Christensen, A review of chemical solute transport models, Nordic Hydrology, 19, 183–216, 1988.

    Google Scholar 

  • Engesgaard, P., and K.L. Kipp, A geochemical model for redox-controlled movement of mineral fronts in ground-water flow systems: A case of nitrate removal by oxidation of pyrite, Water Resources Research, 28, 10, 2829–2843, 1992.

    Article  Google Scholar 

  • Engesgaard P., and R. Traberg, Contaminant transport at a waste residue deposit: 2. Geochemical transport modelling, (Accepted for publication in Water Resources Research 1995).

    Google Scholar 

  • Engesgaard, P., K.L. Kipp, and T. Russell, Analysis of the operator splitting method for modelling reactive transport problems, (in preparation), 1995.

    Google Scholar 

  • Forstner, R.A., A multicomponent transport model, Geoderma, 38, 1–4, 261-278, 1986.

    Article  Google Scholar 

  • Frind, E.O., W.H.M. Duyinsveld, O. Strebel, and J. Boettcher, Modeling of multicomponent transport with microbial transformation in groundwater: The Fuhrberg case, Water Resour. Res., 26(8), 1707–1719, 1990.

    Google Scholar 

  • Friedly, J.C. and J. Rubin, Solute Transport with multiple equilibrium-controlled or kinetically controlled chemical reactions, Water Resour. Res., 28(6), 1935–1953, 1992.

    Article  Google Scholar 

  • Griffioen J, P. Engesgaard, A. Bran, D. Rodak, I. Mucha, and J.C. Refsgaard, Nitrate and Mnchemistry in the alluvial Danubian Lowland aquifer, Slovakia, Groundwater Quality: Remediation and Protection, (Proceedings of the Praque Conference, May 1995), IAHS Publ. no. 225, 1995.

    Google Scholar 

  • Grove, D.B., and W.W. Wood, Prediction and field verification of subsurface-water quality changes during artificial recharge, Lubbock, Texas, Ground Water, 17, 250–257, 1979.

    Article  Google Scholar 

  • Grove, D.B., and K.G. Stollenwerk, Chemical reactions simulated by ground-water-quality models, Water Resour. Bull, 23(4) 601–615, 1987.

    Google Scholar 

  • Hansen, B.K, and D. Postma, Acidification, buffering and salt effects in the unsaturated zone of a sandy aquifer, Klosterhede, Denmark, Water Resour. Res., 31, 2795–2809, 1995.

    Article  Google Scholar 

  • Herzer, J., and W. Kinzelbach, Coupling of transport and chemical processes in numerical transport models, Geoderma, 44, 115–127, 1989.

    Article  Google Scholar 

  • Jennings, A.A., and D.J. Kirkner, T.L. Theis, Multicomponent equilibrium chemistry in groundwater quality models, Water Resour. Res., 18, 1089–1096, 1982.

    Article  Google Scholar 

  • Jennings, A.A., and D.J. Kirkner, Instantaneous equilibrium approximation analysis, J. Hyd. Eng., ASCE 110, 1700–1717, 1984.

    Article  Google Scholar 

  • Jennings, A.A., Critical chemical reaction rates for multicomponent groundwater contamination models, Water Resour. Res., 23, 1775–1784, 1987.

    Article  Google Scholar 

  • Kalatzis, A., R.A. Garcia-Delgado, T-K Pang, A.D. Koussis, and A.R. Bowers,Two-dimensional groundwater transport of reactive solutes with competitive adsorption, Water Resour. Res., 29(7) 2241–2248, 1993.

    Article  Google Scholar 

  • Kaluarachchi, J.J., and J. Morshed, Critical assesment of the operator-splitting technique in solving the advection-dispersion-reaction equation: 1. First-order reaction, Advances in Water Resources, 18, 2, 89–100, 1995

    Article  Google Scholar 

  • Kinzelbach, W., W. Schafer, and J. Herzer, Numerical modeling of natural and enhanced denitrification in aquifers, Water Resour. Res., 27(6) 1123–1135, 1991.

    Article  Google Scholar 

  • Kindred, J.C., and M. Celia, Contaminant transport and biodegradation 2. Conceptual model and test simulations, Water Resour. Res., 25(6), 1149–1159, 1989.

    Article  Google Scholar 

  • Kirkner, D.J., T.L. Theis, A.A. Jennings, Multicomponent solute transport with sorption and soluble complexation, Adv. Water Resour., 1, 120–125, 1984.

    Article  Google Scholar 

  • Kirkner, D.J., A.A. Jennings, T.L. Theis, Multicomponent mass transport with chemical interaction kinetics, J. Hydrol 76, 107–117, 1985.

    Article  Google Scholar 

  • Kirkner D.J., H. Reeves, Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: Effect of the chemistry on the choice of numerical algorithm, 1. Theory, Water Resour. Res., 24, 1719–1729, 1988.

    Article  Google Scholar 

  • Kjeldsen, P., Th.H. Christensen, and O. Hjelmar, Selection of parameters for groundwater quality monitoring at waste incinerator residue disposal sites, Environ. Tech. Letters, 5, 333–344, 1984.

    Article  Google Scholar 

  • Lewis, F.M, C.I. Voss, and J. Rubin, Solute transport with equilibrium aqueous complexation and either sorption or ion exchange, J. Hydrol., 90, 81–115, 1987.

    Article  Google Scholar 

  • Liu, C.W., T.N. Narasimhan, Redox-controlled multiple-species reactive chemical transport: 1. Model development, Water Resour. Res., 25, 869–882, 1989a.

    Article  Google Scholar 

  • Mangold D.Cr and C-F Tsang, A summary of subsurface hydrological and hydrochemical models, Reviews of Geophysics, 29(1) 51–79, 1991.

    Article  Google Scholar 

  • McNab, W.W. Jr., and T.N. Narasimhan, Modeling reactive transport of organic compounds in groundwater using a partial redox disequilibrium approach, Water Resour. Res., 30(9) 2619–2635,

    Article  Google Scholar 

  • 1994.

    Google Scholar 

  • McNab, W.W. Jr., and T.N. Narasimhan, Reactive transport of petroleum hydrocarbon constituents in a shallow aquifer: Modeling geochemical interactions between organic and inorganic speices, Water Resour. Res., 31(8) 2027–2033, 1995.

    Article  Google Scholar 

  • McQuarrie, K.T.B., E.A. Sudicky, and E.O. Frind, Simulation of biodegradable organic contaminants in groundwater, 1, Numerical formulation and model calibration, Water Resour. Res., 26(2) 207–222, 1990.

    Google Scholar 

  • Miller, C.W., L.V. Benson, Simulation of solute transport in a chemically reactive heterogeneous system: Model development and application, Water Resour. Res., 19, 381–391, 1983.

    Article  Google Scholar 

  • Molz, F.J., M.A. Widdowson, and L.D. Benefield, Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media, Water Resour. Res., 22(8) 1207–1216, 1986.

    Article  Google Scholar 

  • Morshed J., and J.J. Kaluarachchi, Critical assesment of the operator-splitting technique in solving the advection-dispersion-reaction equation: 1. Monod kinetics and coupled transport, Advances in Water Resources, 18, 2, 101–110, 1995

    Article  Google Scholar 

  • Narasimhan, T.N., A.F. White, and T. Tokunaga, Groundwater contamination from an inactive uranium mill tailings pile, 2, Application of a dynamic mixing model, Water Resour. Res., 22, 1820–1834,1986.

    Article  Google Scholar 

  • Noorishad, J., C.L. Carnahan, L.V. Benson, Development of the non-equilibrium reactive chemical transport code CHEMTRNS, LBL-22361, Lawrence Berkeley Laboratory, University of California,Berkeley, 1987.

    Google Scholar 

  • Parkhurst, D.L., P. Engesgaard, and K.L. Kipp, Coupling the geochemical model PHREEQC with a 3D multi-component solute-transport model, abstract, V.M. Goldschmidt Conference, May 24-26, The Pennsylvania State University, 1995.

    Google Scholar 

  • Rainwater, K.A, W.R. Wise, and R.J. Charbeneau, Parameter estimation through groundwater tracer tests, Water Resour. Res., 23(10) 1901–1910, 1987.

    Article  Google Scholar 

  • Reardon EJ., Kdņs - Can they be used to describe reversible ion sorption reactions in contaminant migration?, Ground water, 19(3) 279–286.

    Google Scholar 

  • Reeves, H., D.J. Kirkner, Multicomponentmass transport with homogeneous and heterogeneous chemical reactions: Effect of the chemistry on the choice of numerical algorithm, 2. Numerical results, Water Resour. Res., 24, 1730–1739, 1988.

    Article  Google Scholar 

  • Rittmann, B.E., The significance of biofilms in porous media, Water Resour. Res., 29(7) 2195–2202,

    Article  Google Scholar 

  • 1993

    Google Scholar 

  • Rubin, J., and R.V. James, Dispersion-affected transport of reacting solutes in saturated porous media: Galerkin method applied to equilibrium-controlled exchange in unidirectional steady water flow, Water Resour. Res., 9, 1332–1356, 1973.

    Article  Google Scholar 

  • Rubin, J., Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions, Water Resour. Res., 19, 1231–1252, 1983.

    Article  Google Scholar 

  • Rubin, J., Solute transport with multisegment, equilibrium-controlled reactions: A feedforward simulation method, Water Resour. Res., 26, 2029–2055, 1990.

    Google Scholar 

  • Sanford, W.E., L.F. Konikow, Simulation of calcite dissolution and porosity changes in saltwater mixing zones in coastal aquifers, Water Resour. Res., 25(4) 655–667, 1989.

    Article  Google Scholar 

  • Å imunek, J., and D.L. Suraez, Two-dimensional transport model for variably saturated porous media with major ion chemistry, Water Resour. Res., 30, 1115–1133, 1994

    Article  Google Scholar 

  • Stollenwerk, K.G., Modeling the effects of variable groundwater chemistry on adsorption of molybdate, Water Resour. Res., 31, 347–357, 1995.

    Article  Google Scholar 

  • Sturman, P.J., P.S. Stewart, A.B. Cunningham, E.J. Bouwer, and J.H. Wolfram, Engineering scale-up of in situ bioremediation processes: a review, J. of Contain. Hydrol., 19, 171–203, 1995

    Article  Google Scholar 

  • Sykes, J.F., S. Soyupak, and G.J. Farquhar, Modeling of leachate organic migration and attenuation in groundwaters below sanitary landfills, Water Resour. Res., 18(1), 135–145, 1982.

    Article  Google Scholar 

  • Taylor, S.W., and P.R. Jaffe, Biofilm growth and the related changes in the physical properties of a porous medium 1. Experimental investigation, Water Resour. Res., 26(9) 2153–2159, 1990a.

    Google Scholar 

  • Taylor, S.W., and P.R. Jaffe, Biofilm growth and the related changes in the physical properties of a porous medium 2. Permeability, Water Resour. Res., 26(9) 2161–2169, 1990b.

    Article  Google Scholar 

  • Taylor, S.W., and P.R. Jaffe, Biofilm growth and the related changes in the physical properties of a porous medium 3. Dispersivity and model verification, Water Resour. Res., 26(9), 2171–2180, 1990c.

    Article  Google Scholar 

  • Taylor, S.W., and P.R. Jaffe, Substrate and biomass transport in a porous medium, Water Resour. Res., 26(9), 2181–2194, 1990d.

    Article  Google Scholar 

  • Valocchi, A.J., R.L. Street, P.V. Roberts, Transport of ion exchanging solutes in groundwater: Chromatographic theory and field simulation, Water Resour. Res., 17, 1517–1527, 1981.

    Article  Google Scholar 

  • Valocchi, A.J., Validity of the local equilibrium assumption for modeling sorbing solute transport through homogeneous soils, Water Resour. Res., 21, 808–820, 1985.

    Article  Google Scholar 

  • Valocchi, A.J., Effect of radial flow on deviations from local equilibrium during sorbing solute transport through homogeneous soils, Water Resour. Res., 22, 1693–1701, 1986.

    Article  Google Scholar 

  • Valocchi, A.J., Theoretical analysis of deviations from local equilibrium during sorbing solute transport through idealized stratified aquifers, J. Contam. Hydrol., 2, 191–207, 1988.

    Article  Google Scholar 

  • Valocchi, A.J., Spatial moment analysis of the transport of kinetically adsorbing solutes through stratified aquifers, Water Resour. Res., 25, 273–279, 1989.

    Article  Google Scholar 

  • Valocchi, A.J., and M. Malmstead, Accuracy of operator splitting for advection-dispersion-reaction problems, Water Resour. Res., 28, 1471–1476, 1992.

    Article  Google Scholar 

  • Vandevivere, P., P. Baveye, D.S. de Lozada, and P. DeLeo, Microbial clogging of saturated soils and aquifer materials: Evaluation of mathematical models, Water Resour. Res., 31(9), 2173–2180, 1995.

    Article  Google Scholar 

  • VKI, BIODEGRATION, Technical Reference Manual, Vandkvalitetsinstituttet, Hørsholm, 1995.

    Google Scholar 

  • VKI, GEOCHEMISTRY, Technical Reference Manual, Vandkvalitetsinstituttet, Hørsholm, 1994.

    Google Scholar 

  • Walsh, M.P, S.L. Bryant, R.S. Schechter, L.W. Lake, Precipitation and dissolution of solids attending flow through porous media, Am. Inst. Chem. Eng. J., 30, 317–328, 1984.

    Google Scholar 

  • Walter, A.L., E.O. Frind, D.W. Blowes, C.J. Ptacek, and J.W. Molson, Modelling of multicomponent reactive transport in groundwater 1. Model development and evaluation, Water Resour. Res., 30(11), 3137–3148, 1994.

    Article  Google Scholar 

  • Widdowson, M.A., F.J. Molz, and L.D. Benefield, A numerical transport model for oxygen- and nitratebased respiration linked to substrate and nutrient availability in porous media, Water Resour. Res., 24(9), 1553–1565, 1988.

    Article  Google Scholar 

  • Wolfsberg, A.V., and D.L. Freyberg, Efficient simulation of single species and multispecies transport in groundwater with local adapative grid refinement, Water Resour. Res., 30(11), 2979–2991, 1994.

    Article  Google Scholar 

  • Wood, B.D., C.N. Dawson, J.E. Szecsody, and G.P. Streile, Modeling contaminant transport and biodegradation in a layered porous media system, Water Resour. Res., 30(6), 1833–1845, 1994.

    Article  Google Scholar 

  • Yeh, G.T., and V.S. Tripathi, A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components, Water Resour. Res., 25, 93–108, 1989.

    Article  Google Scholar 

  • Yeh, G.T., and V.S. Tripathi, A model for simulating transport of reactive multispecies components: Model development and demonstration, Water Resour. Res., 27(12) 3075–3094, 1991.

    Article  Google Scholar 

  • Zysset, A., F. Stauffer, and T. Dracos, Modeling of chemically reactive groundwater transport, Water Resour. Res., 30(7) 2217–2228, 1994a.

    Article  Google Scholar 

  • Zysset, A., F. Stauffer, and T. Dracos, Modeling of reactive groundwater transport governed by biodegradation, Water Resour. Res., 30(8) 2423–2434, 1994b.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engesgaard, P. (1990). Multi-Species Reactive Transport Modelling. In: Abbott, M.B., Refsgaard, J.C. (eds) Distributed Hydrological Modelling. Water Science and Technology Library, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0257-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0257-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6599-3

  • Online ISBN: 978-94-009-0257-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics