Skip to main content

Self-Assembly in Chemical Synthesis

  • Chapter
Chemical Synthesis

Part of the book series: NATO ASI Series ((NSSE,volume 320))

Abstract

More and more chemists are beginning to realise that the conventional synthetic methodology of making compounds group-by-group or molecule-by-molecule, employing reagents or catalysts to make or break covalent bonds and so manipulate functional groups and transform molecular structures, is insufficient by itself to construct the materials they would like to make in the future. Along its many synthetic trails, nature does not rely upon the inefficient use of protecting groups and the complexity of reagents according to the usual manner and practice of the synthetic organic chemist in a traditional sense. Indeed, one of the keys to the efficient operation of biological systems is their ability to self-assemble,1 self-organise2 and self-replicate.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lindsey, J. S. (1991) Self-assembly in synthetic routes to molecular devices. Biological principles and chemical perspectives : a review,New J. Chem. 15, 153–180.

    CAS  Google Scholar 

  2. Ringsdorf, H., Scharb, B., Venzmer, J. (1988) Molecular architecture and function of polymeric orientated systems: Models for the study of organisation, surface recognition, and dynamics, Angew. Chem. Int. Ed. Engl. 27, 113-158. Muller, W., Ringsdorf, H., Rump, E., Wildburg, G., Zhang, X., Angermaier, L., Knoll, W., Liley, M., and Spinke, J. (1993) Attempts to mimic docking processes of the immune system, Science 262, 1706-1708. H 52

    Google Scholar 

  3. Tjivikva, T., Ballester, P., and Rebek Jr. J. (1990) Self-replicating systems, J. Am. Chem. Soc. 112, 1249-1250. Rebek Jr.J. (1994) A template for life, Chem. Br. 30, 286-290. Li, T. and Nicolaou, K.C. (1994) Chemical self-replication of palindromic duplex DNA, Nature 396, 218-221. Sievers, D. and von Kiedrowski, G. (1994) Self-replication of complementary nucleotide -based oligomers, Nature 369, 221-224. Menger, F.M., Eliseev, A.V., and Khanjin, N.A. (1994) “A self-replicating system”: New experimental data and a new mechanistic interpretation, J. Am. Chem. Soc. 116, 3613-3614.

    Google Scholar 

  4. Examples of self-assembly processes used in one form or another by nature include viral capsid assembly, ribosome assembly, protien folding and of course the construction of the DNA double helix. The references cited below (4-8) give only a flavour for the diversity and are by no means complete.

    Google Scholar 

  5. Nomura, M. (1973) Assembly of bacterial ribosomes, Science 179, 864–873.

    Article  CAS  Google Scholar 

  6. Anfinsen, C. B. (1973) Principles that govern the folding of protien chains, Science 181, 223–230.

    Article  CAS  Google Scholar 

  7. Klug, A. (1983) From molecules to biological assemblies, Angew. Chem. Int. Ed. Engl 22, 565–582.

    Article  Google Scholar 

  8. Richards, F. M. (1991) The protien folding problem, Sci. Am. 264(1), 54–57.

    Article  CAS  Google Scholar 

  9. Amabilino, D. B. and Stoddart, J. F.(1993) Self assembly and macromolecular design,Pure AppL Chem. 65, 2351–2359.

    Article  CAS  Google Scholar 

  10. Watson, J. D. and Crick, F. H. C.(1953) Molecular structure of nucleic acids, Nature 171, 737–738.

    Article  CAS  Google Scholar 

  11. Anelli, P. L., Ashton, P. R., Spencer, N, Slawin, A. M. Z., Stoddart, J. F., and Williams, D.J.(1991)Self-assembling [2]pseudorotaxanes, Angew. Chem. Int. Ed. Engl. 30, 1036-1039. Stoddart, J.F. Chirality in drug design and synthesis, C. Brown (Ed.), Academic Press, London, 1990, p. 53–81.

    Google Scholar 

  12. Anelli, P. L., Ashton, P. R., Ballardini, R., Balzani, V., Delgado, M., Gandolfi, M. T., Goodnow, T. T., Kaifer, A. E., Philp, D., Pietraszkiewicz, M., Prodi, L., Reddington, M. V., Slawin, A. M. Z., Spencer, N., Stoddart, J. F., Vicent, C, and Williams, D. J.(1992) Molecular meccano. 1: [2]Rotaxanes and a [2]catenane made to order, J. Am. Chem. Soc. 114, 193–218.

    Article  CAS  Google Scholar 

  13. Lehn, J-M. (1990) Perspectives in supramolecular chemistry, Angew. Chem. Int. Ed. Engl. 29, 1304-1319. Koert, U., Harding, M.M., and Lehn, J.-M. (1990) DNH deoxyribonucleohelicates: Self-assembly of oligonucleosidic double-helical metal complexes, Nature 346, 339-342.

    Google Scholar 

  14. Rao, T.V.S. and Lawrence, D.S. (1990) Self-assembly of a threaded molecular loop, J. Am. Chem. Soc. 112, 3614-3615. Manka, J.S. and Lawrence, D.S. (1990) Template-driven selfassembly of a porphyrin-containing supramolecular complex, J. Am. Chem. Soc. 112, 2440-2242.

    Google Scholar 

  15. Dietrich-Buchecker, C. O. and Sauvage, J. P.(1989) A synthetic molecular trefoil knot,Angew. Chem. Int. Ed. Engl. 28, 189–192.

    Article  Google Scholar 

  16. Seto, C. T. and Whitesides, G. M.(1990) Self-assembly based on the cyanuric acid-melamine lattice, J. Am. Chem. Soc. 112, 6409–6411.

    Article  CAS  Google Scholar 

  17. Seto, C. T. and Whitesides, G. M. (1991) Selfassembly of a hydrogen bonded 2+3 supramolecular complex J. Am. Chem. Soc. 113, 712–713.

    Article  CAS  Google Scholar 

  18. Whitesides, G. M., Mathias, J. P., and Seto, C. T. (1991)Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures, Science, 254, 1312–1319.

    Article  CAS  Google Scholar 

  19. Saalfrank, R. W., Stark, A., Bremer, M., and Hummel, H. V.(1990) Formation of a tetranuclear chelate (4-) ions of divalent metals (Mn, Co, Ni) with idealised T symmetry by spontaneous self-assembly, Angew. Chem. Int. Ed. Engl. 29, 311–314.

    Article  Google Scholar 

  20. Anderson, H. L. and Sanders, J. K. M.(1990) Amine-template-directed synthesis of cyclic porphyrin oligomers, Angew. Chem. Int. Ed. Engl. 29, 1400–1403

    Article  Google Scholar 

  21. Lehn, J.-M. (1988) Supramolecular chemistry - scope and perspective, Angew. Chem. Int. Ed. Engl. 27, 89–112.

    Article  Google Scholar 

  22. Amabilino, D. B. and Stoddart, J. F.(1994) Molecules that build themselves, New Scientist Vol 141, No 1913, 19 Feb, p. 25–29.

    CAS  Google Scholar 

  23. Ashton, P.R., Brown, C.L., Chrystal, E.J.T., Goodnow, T., Kaifer, A.E., Parry, K.P., Philp, D., Slawin, A.M.Z., Spencer, N., Stoddart, J.F., and Williams, D.J. (1991) The self-assembly of a highly ordered [2]catenane, J. Chem. Soc, Chem. Commun. 634-639.

    Google Scholar 

  24. Ashton, P.R., Belohradsky, M., Philp, D., and Stoddart, J.F. (1993) Slippage - an alternative method for assembling [2]rotaxanes, J. Chem. Soc, Chem. Commun., 1269-1274.

    Google Scholar 

  25. Ashton, P.R., Belohradsky, M., Philp, D., and Stoddart, J.F. (1993) The self-assembly of [2]-and [3]-rotaxanes by slippage, J. Chem. Soc, Chem. Commun. 1274-1277.

    Google Scholar 

  26. Ashton, P. R., Philp, D., Spencer, N., and J. F. Stoddart (1991) The self-assembly of [n]pseudorotaxanes J. Chem. Soc, Chem. Commun. 1677-1679.

    Google Scholar 

  27. Ashton, P.R., Philp, D., Reddington, M., Slawin, A.M.Z., Spencer N., Stoddart, J.F., and Williams, D.J. (1991) The self-assembly of complexes with [njpseudorotaxane structures, J. Chem. Soc, Chem. Commun. 1680-1683.

    Google Scholar 

  28. Anelli, P. L., Ashton, P. R., Goodnow, T. T., Slawin, A. M. Z., Spencer N., Stoddart, J. F., and Williams, D. J.(1991) Self-assembling [2]pseudorotaxanes, Angew. Chem., Int. Ed. Engl. 30, 1036–1039.

    Article  Google Scholar 

  29. Pedersen, C. J. (1967) Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc 89, 2495–2496.

    Article  CAS  Google Scholar 

  30. Pedersen, C. J. (1967) Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc. 89, 7017–7036.

    CAS  Google Scholar 

  31. Feynman, R. P. (1960) The wonders that await the microscope, Sat. Rev. 43, 45–47.

    Google Scholar 

  32. Summers, L. A. (1980) The Bipyridinium Herbicides, Academic Press: London.

    Google Scholar 

  33. Helgeson, R. C., Tarnowski, T. L., Timko, J. M., and Cram, D. J.(1977) Host-guest complexation. 6. The [2.2]paracyclophanyl structural unit in host compounds, J. Am. Chem. Soc 99, 6411–6418.

    Article  CAS  Google Scholar 

  34. Allwood, B. L., Spencer, N., Shahriari-Zavareh, H., Stoddart, J. F., and Williams, DJ. (1987) Complexation of paraquat by a bisparaphenylene-34-crown-10 derivative, J. Chem. Soc, Chem. Commun. 1064-1066.

    Google Scholar 

  35. It will be convienient at this point to describe the acronyms, which are composed of letters, that identify the neutral and charged compounds displayed throughout this essay. Compounds such as 1,4-dihydroxybenzene and 1,4-dimethoxybenzene are abbreviated to 1/4DHB and 1/4DMB, respectively, and bis-p-phenylene-34-crown-10 to BPP34C10. The other acronyms can be deduced from the following rules: B stands for bis when at the beginning, for benzyloxy when in the middle and benzene when at the end of the name. E, H, P, S, and T stand for ethoxy, hydroxy, phenoxy, triisopropylsilyl, and tosyloxy units, respectively. CY, TU, XY, and BIXY represents cyclophane, trioxaundecane, xylylene, and bisxylylene units, respectively. In addition, BIPY stands for a bipyridinium ring system with fromal charges being indicated in the usual way. BBB stands for bis(bromomethyl)benzene. The neutral molecules are unshaded, whereas they are shaded in the case of the positively charged organic species with the formal charges positioned appropriately.

    Google Scholar 

  36. Hunter, C. A., and Sanders, J. K. M.(1990) The nature of π-π K interactions, J. Am. Chem. Soc. 112, 5523.

    Google Scholar 

  37. Langford, S.J. and Stoddart, J.F. (1994) University of Birmingham, Unpublished results.

    Google Scholar 

  38. Langford, S.J., Raymo, F.M., and Stoddart, J.F. (1994) University of Birmingham, Unpublished results.

    Google Scholar 

  39. Geuder, W., Hunig, S., and Suchy, A.(1983) Phanes with two 4,4’-bipyridinium moieties - A new class of compound, Angew. Chem. Int. Ed. Engl. 22, 489–490.

    Article  Google Scholar 

  40. Geuder, W., Hunig, S., and Suchy, A. (1986) Single and double bridged viologenes and intramolecular pimerization of their cation radials, Tetrahedron, 42, 1665–1672.

    Article  CAS  Google Scholar 

  41. Brown, C.L., Philp, D., and Stoddart, J.F. (1991) The template directed synthesis of a rigid tetracationic cyclophane receptor, Synlett, 462-464.

    Google Scholar 

  42. Odell, B., Reddington, M. V., Slawin, A. W. Z., Spencer, N, Stoddart, J. F., and Williams, D. J.(1988) Cyclo(paraquat-p-phenylene). A tetracationic multipurpose receptor, Angew. Chem. Int. Ed. Engl. 27, 1547–1550.

    Article  Google Scholar 

  43. Goodnow, T. T., Reddington, M. V., Stoddart, J. F., and Kaifer, A. E.(1991) Cyclo(paraquat-p-phenylene). A novel synthetic receptor for amino acids with electron-rich aromatic moieties,J. Am. Chem. Soc. 113, 4335–4337.

    Article  CAS  Google Scholar 

  44. Ashton, P, Odell B., Reddington, M. V., Slawin, A. W. Z., Stoddart, J. F., and Williams, D. J.(1988) Isostructural, alternately-charged receptor stacks, Angew. Chem. Int. Ed. Engl. 27, 1550–1553.

    Article  Google Scholar 

  45. Philp, D., Slawin, A. M. Z., Spencer, N., Stoddart, J. F., and Williams, D.J. (1991) The complexation of tetrathiafulvalene by cyclobis(paraquat-p-phenylene), J. Chem. Soc, Chem. Commun. 1584-1586.

    Google Scholar 

  46. Ashton, P. R., Goodnow, T. T., Kaifer, A. E., Reddington, M., Slawin, A. M. Z., Spencer N., Stoddart, J. F., Vicent, C, and Williams, D. J.(1989) A [2]catenane made to order,Angew. Chem., Int. Ed. Engl. 28, 1396–1399.

    Article  Google Scholar 

  47. 43a. Philp, D. and Stoddart, J.F. (1991) Self-assembly in organic synthesis, Synlett 445-458.

    Google Scholar 

  48. Reddington, M.V. (1989) Non-covalent bonding interactions: cyclophanes, catenanes, and rotaxanes, PhD. Thesis, University of Sheffield.

    Google Scholar 

  49. Ashton, P.R., Ballardini, R., Balzani, V., Gandolfi, M.T., Marquis, D.J.-F., Perez-Garcia, L., Prodi, L., Stoddart, J.F., and Venturi, M., (1994) The self-assembly of controllable [2]catenanes, J. Chem. Soc, Chem. Commun. 177-180.

    Google Scholar 

  50. G.R. Desiraju (1989) Crystal Engineering. The design of organic solids, Elsevier, Amsterdam.

    Google Scholar 

  51. Pimentel, G. C. and McClellan, A. L. (1960) The Hydrogen Bond, Freeman, San Fransisco.

    Google Scholar 

  52. Jeffrey, G. A. and Saenger, W. (1991) Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin.

    Google Scholar 

  53. Etter, M. C., Urbanczyk-Lipkowska, Z., Jahn, D.A., and Frye, J. S. (1986) Solidstate structural characterisation of 1,3-cyclohexanedione and of a 6:1 cyclohexane dione: benzene cyclamer, a novel host-guest species, J. Am. Chem. Soc. 108, 5871–5876.

    Article  CAS  Google Scholar 

  54. Etter, M. C., Urbanczyk-Lipkowska, Z., Zia-Ebrahimi, M., and Panunto, T. W. (1990) Hydrogen bond-directed cocrystallisation and molecular recognition properties of diarylureas, J. Am. Chem. Soc. 112, 8415–8426.

    Article  CAS  Google Scholar 

  55. Etter, M. C. and Reutzel, S. M. (1991) Hydrogen bond-directed cocrystallisation and molecular recognition, properties of acyclic imides, J. Am. Chem. Soc. 113, 2586–2598.

    Article  CAS  Google Scholar 

  56. Gorbitz, C. H. and Etter, M. C. (1992) Hydrogen bonds to carboxylate groups. Syn/anti distributions and steric effects,J. Am. Chem. Soc. 114, 627–631.

    Article  CAS  Google Scholar 

  57. Etter, M. C, Reutzel, S.M., and Choo, C. G. (1993) Self-organisation od adenine and thymine in the solid state, J. Am. Chem. Soc. 115, 4411–4412.

    Article  CAS  Google Scholar 

  58. Ashton, P. R., Brown, C. L., Chrystal, E. J. T., Goodnow, T. T., Kaifer, A. E., Parry, K. P., Philp, D., Slawin, A. M. Z., Spencer, N., Stoddart, J. F., and Williams, D. J. (1989) The self-assembly of a highly ordered [2]catenane, J. Chem. Soc, Chem. Commun. 634-639.

    Google Scholar 

  59. Reddington, M.V., Slawin, A.M.Z., Spencer, N., Stoddart, J.F., Vicent, C, and Williams, D.J. (1991) Towards a molecular abacus, J. Chem. Soc, Chem. Commun. 630-634.

    Google Scholar 

  60. Ashton, P.R., Philp, D., Spencer, N., Stoddart, J.F., and Williams, D.J. (1994) A selforganised layered superstructure of arrayed [2]pseudorotaxanes, J. Chem. Soc, Chem. Commun. 181-184.

    Google Scholar 

  61. The name rotaxane is derived [Schill, G. (1971) Catenanes, rotaxanes and knots, Academic Press, New York] from the Latin words rota meaning wheel and axis meaning axle.

    Google Scholar 

  62. Anelli, P. L., Spencer, N., and Stoddart, J. F.(1991) A molecular shuttle, J. Am. Chem. Soc. 113, 5131 – 5133.

    Article  CAS  Google Scholar 

  63. Ashton, P.R., Philp, D., Spencer, N., and Stoddart, J.F. (1992) A new design strategy for the self-assembly of molecular shuttles, J. Chem. Soc, Chem. Commun. 1125-1128.

    Google Scholar 

  64. Cram, D. J., Blando, M. T., Park, K.. and Knobler, C. B. (1992) Constrictive and intrinsic binding of a hemicarcerand containing four portals, J. Am. Chem. Soc. 114, 7765–7772.

    Article  CAS  Google Scholar 

  65. Harrison, I.T. (1972) The effect of ring size on threading reactions of macrocycles, J. Chem. Soc, Chem. Commun. 231-232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Langford, S.J., Fraser Stoddart, J. (1996). Self-Assembly in Chemical Synthesis. In: Chatgilialoglu, C., Snieckus, V. (eds) Chemical Synthesis. NATO ASI Series, vol 320. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0255-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0255-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6598-6

  • Online ISBN: 978-94-009-0255-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics