Skip to main content

Statistics of the Microwave Background Anisotropies Caused by Cosmological Perturbations of Quantum-Mechanical Origin

  • Chapter
  • 170 Accesses

Part of the book series: Mathematical and Physical Sciences ((ASIC,volume 476))

Abstract

The genuine quantum gravity effects can already be around us. It is likely that the observed large-angular-scale anisotropics in the microwave background radiation are induced by cosmological perturbations of quantum-mechanical origin. Such perturbations are placed in squeezed vacuum quantum states and, hence, are characterized by large variances of their amplitude. The statistical properties of the anisotropics should reflect the underlying statistics of the squeezed vacuum quantum states. In this paper, the theoretical variances for the temperature angular correlation function are described in detail. It is shown that they are indeed large and must be present in the observational data, if the anisotropics are truly caused by the perturbations of quantum-mechanical origin. Unfortunately, these large theoretical statistical uncertainties will make the extraction of cosmological information from the measured anisotropics a much more difficult problem than we wanted it to be. This contribution to the Proceedings is largely based on references [42,8]. The Appendix contains an analysis of the “standard” inflationary formula for density perturbations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. J. Isham, Structural Issues in Quantum Gravity, gr-qc 9510063.

    Google Scholar 

  2. G. F. Smoot, et al, Astrophys. J. 396, LI (1992).

    Article  Google Scholar 

  3. L. P. Grishchuk, Phys. Rev. D 50, 7154 (1994).

    Article  ADS  Google Scholar 

  4. L. P. Grishchuk and Y. V. Sidorov, Phys. Rev. D 42, 3413 (1990); Class. Quantum Grav. 6, L161 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  5. Special issues: J. Mod. Opt. 34 (6,7) (1987); J. Opt. Soc. Am. 84, (10) (1987); NASA Conference Publication 3135 (1992).

    Google Scholar 

  6. Special issue: Physica Scripta (Eds. W. P. Schleich and S. M. Barnett) T 48 (1993).

    Google Scholar 

  7. L. P. Grishchuk. Cosmological Perturbations of Quantum-Mechanical Origin and Anisotropy of the Microwave Background Radiation. In: Current Topics in Astrofundamental Physics: The Early Universe (Eds. N. Sanchez and A. Zichichi) NATO ASI Series C, Vol. 467, p. 205 (Kluwer Academic Publishers, 1995).

    Google Scholar 

  8. L. P. Grishchuk. Comment on “Cosmological Perturbations of a Relativistic Condensate”. Report WUGRAV-95–12, gr-qc 9506010.

    Google Scholar 

  9. J. M. Niedra and A. I. Janis, G.R.G. 15, 241 (1983).

    MathSciNet  Google Scholar 

  10. P. J. Steinhardt. Cosmology at the Crossroads. Invited talk at the Snowmass meeting (to be published), astro-ph 9502024.

    Google Scholar 

  11. R. K. Sachs and A. M. Wolfe, Astrophys. J. 1, 73 (1967).

    Article  ADS  Google Scholar 

  12. L. P. Grishchuk, Phys. Rev. D 48, 3513 (1993).

    Article  ADS  Google Scholar 

  13. L. P. Grishchuk, Phys. Rev. D 48, 5581 (1993).

    Article  ADS  Google Scholar 

  14. P. Paradoksov, Uspekhi Fiz. Nauk, 89, 707 (1966) [Sov. Phys. Uspekhi, 9, 618 (1967)].

    Google Scholar 

  15. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill Book Co., 1968).

    Google Scholar 

  16. M. Fisz, Probability Theory and Mathematical Statistics(J. Wiley & Sons, 1967)

    Google Scholar 

  17. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, 1980).

    MATH  Google Scholar 

  18. M. Abramowitz and I. A. Stegun, (eds), Handbook of Mathematical Functions (Dover Publishing, 1972).

    MATH  Google Scholar 

  19. C. L. Bennett, et al, Astrophys. J. 436, 423 (1994).

    Article  ADS  Google Scholar 

  20. E. L. Wright, et al, Astrophys. J. 436, 443 (1994).

    Article  ADS  Google Scholar 

  21. For gravitational waves this formula is in fact known for long time. See Eq. (5b) in L. P. Grishchuk, Ann. N.Y. Acad. Sci. 302, 439 (1977) where the notational replacement h (n) = A (n) should be made and where A(n) should be interpreted as the final (generated) characteristic amplitude, A2(n) ~ B2 n 2(1+β, while B(n) should be interpreted as the initial (zero-point quantum) characteristic amplitude, B(n) ~ n, in accord with the scale factor, Eq. (15) above, in which the 7?-time grows from -∞.

    Google Scholar 

  22. M. White, D. Scott, and J. Silk, Annu. Rev. Astron. Astrophys. 32, 319 (1994).

    Article  ADS  Google Scholar 

  23. L. F. Abbott and M. B. Wise, Astrophys. J. 282, L47 (1984).

    Article  ADS  Google Scholar 

  24. J. R. Bond and G. Efstathiou, M.N.R.A.S. 226, 655 (1987).

    ADS  Google Scholar 

  25. R. Fabbri, F. Lucchin and S. Matarrese, Astrophys. J. 315, 1 (1987).

    Article  ADS  Google Scholar 

  26. R. Scaramella and N. Vittorio, Astrophys. J. 353, 372 (1990).

    Article  ADS  Google Scholar 

  27. L. Cayon, E. Martinez-Gonzalez and J. L. Sanz, M.N.R.A.S. 253, 599 (1991).

    ADS  Google Scholar 

  28. M. White, L. M. Krauss and J. Silk, Astrophys. J. 418, 535 (1993).

    Article  ADS  Google Scholar 

  29. R. Scaramella and N. Vittorio, Astrophys. J. 411, 1 (1993).

    Article  ADS  Google Scholar 

  30. A. M. Yaglom, An Introduction to the Theory of Stationary Random Functions (Prentice-Hall Inc., 1962).

    MATH  Google Scholar 

  31. N. Deruelle and V. F. Mukhanov, “On Matching Conditions for Cosmological Perturbation”, preprint gr-qc 9503050.

    Google Scholar 

  32. R. R. Caldwell, “On the Evolution of Scalar Metric Perturbations in an Inflationary Cosmology”, preprint gr-qc 9509027.

    Google Scholar 

  33. S. W. Hawking, Phys. Lett. 115B 295, 1982).

    ADS  Google Scholar 

  34. A. A. Starobinsky, Phys. Lett. 117B, 175 (1982).

    ADS  Google Scholar 

  35. A.H. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).

    Article  ADS  Google Scholar 

  36. A. L. Zel’manov, Doklady Acad. Nauk USSR 107, 815 (1956) [Sov. Phys. Doklady 1, 227 (1956)].

    MathSciNet  Google Scholar 

  37. J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D 28, 679 (1983).

    Article  ADS  Google Scholar 

  38. J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  39. V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Reports 215, 6 (1992).

    Article  MathSciNet  Google Scholar 

  40. D. Polarski and A. A. Starobinsky, “Semiclassicality and Decoherence of Cosmological Perturbations”, Report LMPM 95–4, gr-qc 9504030.

    Google Scholar 

  41. J. A. Frieman, “Cosmological Models at the Millennium”, FERMILAB-Conf-95/151-A, 1995.

    Google Scholar 

  42. L. P. Grishchuk, “Statistics of the Microwave Background Anisotropics Caused by the Squeezed Cosmological Perturbation”, Report WUGRAV- 95–6, gr-qc 9504045

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Grishchuk, L.P. (1996). Statistics of the Microwave Background Anisotropies Caused by Cosmological Perturbations of Quantum-Mechanical Origin. In: Sánchez, N., Zichichi, A. (eds) String Gravity and Physics at the Planck Energy Scale. Mathematical and Physical Sciences, vol 476. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0237-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0237-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6589-4

  • Online ISBN: 978-94-009-0237-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics