Skip to main content

Part of the book series: Mathematical and Physical Sciences ((ASIC,volume 476))

Abstract

If the cosmological evolution is followed back in time, we come to the initial singularity where the classical equations of general relativity break down. This led many people to believe that in order to understand what actually happened at the origin of the universe, we should treat the universe quantum-mechanically and describe it by a wave function rather than by a classical spacetime. This quantum approach to cosmology was initiated by DeWitt [1] and Misner [2], and after a somewhat slow start has become very popular in the last decade or so. The picture that has emerged from this line of development [3, 4, 6, 5, 7, 8, 9] is that a small closed universe can spontaneously nucleate out of nothing, where by ‘nothing’ I mean a state with no classical space and time. The cosmological wave function can be used to calculate the probability distribution for the initial configurations of the nucleating universes. Once the universe nucleated, it is expected to go through a period of inflation, which is a rapid (quasi-exponential) expansion driven by the energy of a false vacuum. The vacuum energy is eventually thermalized, inflation ends, and from then on the universe follows the standard hot cosmological scenario. Inflation is a necessary ingredient in this kind of scheme, since it gives the only way to get from the tiny nucleated universe to the large universe we live in today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Witt, B.S. (1967) Phys. Rev. 160, 1113.

    Article  ADS  Google Scholar 

  2. Misner, C.W. (1972) in Magic Without Magic, Freeman, San Francisco.

    Google Scholar 

  3. Vilenkin, A. (1982) Phys. Lett. 117B, 25.

    MathSciNet  Google Scholar 

  4. Hartle, J.B. and Hawking, S.W. (1983) Phys. Rev. D28, 2960.

    ADS  MathSciNet  Google Scholar 

  5. Linde, A.D. (1984) Lett. Nuovo Cim. 39, 401.

    Article  ADS  Google Scholar 

  6. Zel’dovich, Y.B. and Starobinsky, A.A. (1984) Sov. Astron. Lett. 10, 135.

    ADS  Google Scholar 

  7. Rubakov, V.A. (1984) Phys. Lett. 148B, 280.

    MathSciNet  Google Scholar 

  8. Vilenkin, A. (1984) Phys. Rev. D30 509.

    Article  ADS  MathSciNet  Google Scholar 

  9. The idea that a closed universe could be a vacuum fluctuation was first suggested by E.P. Tryon (1973) Nature 246, 396, and independently by P.I. Fomin (1973) ITP Preprint, Kiev; (1975) Dokl Akad. Nauk Ukr. SSR 9A, 831. However, these authors offered no mathematical description for the nucleation of the universe. Quantum tunneling of the entire universe through a potential barrier was first discussed by D. Atkatz and H. Pagels (1982) Phys. Rev. D25, 2065.

    Google Scholar 

  10. Coleman, S. (1988) Nucl. Phys. B307, 867. Similar ideas were explored by Giddings, S.B. and Strominger, A. (1988) Nucl Phys. B307, 854 and by Banks, T. (1988) Nucl. Phys. B309, 493.

    Article  ADS  Google Scholar 

  11. We note that calling something the greatest mistake of one’s life may be a mistake. For example, the introduction of the cosmological constant, which Einstein called the greatest mistake of his life, now appears to be not such a bad idea.

    Google Scholar 

  12. Halliwell, J.J. and Hawking, S.W. (1985) Phys. Rev. D31, 1777.

    ADS  MathSciNet  Google Scholar 

  13. Vachaspati, T. and Vilenkin, A. (1988) Phys. Rev. D37, 898.

    ADS  MathSciNet  Google Scholar 

  14. Vilenkin, A. (1989) Phys. Rev. D39, 1116.

    ADS  Google Scholar 

  15. Lapchinsky, V. and Rubakov, V.A. (1979) Acta Phys. Polon. B10, 1041.

    MathSciNet  Google Scholar 

  16. Banks, T. (1985) Nucl. Phys. B249, 332.

    Article  ADS  Google Scholar 

  17. Vilenkin, A. (1985) Nucl. Phys. B252, 141.

    Article  ADS  Google Scholar 

  18. Teitelboim, C. (1982) Phys. Rev. D25, 3159.

    ADS  MathSciNet  Google Scholar 

  19. Halliwell, J.J. and Hartle, J.B. (1990) Phys. Rev. D41, 1815.

    ADS  MathSciNet  Google Scholar 

  20. Vilenkin, A. (1986) Phys. Rev. D33, 3560.

    ADS  MathSciNet  Google Scholar 

  21. Vilenkin, A. (1988) Phys. Rev. D37, 888.

    ADS  MathSciNet  Google Scholar 

  22. Vilenkin, A. (1994) Phys. Rev. D50, 2581.

    ADS  MathSciNet  Google Scholar 

  23. Hawking, S.W. (1984) Nucl. Phys. B239, 257.

    Article  ADS  MathSciNet  Google Scholar 

  24. Linde, A.D. (1990) Particle Physics and Inflationary Cosmology, Harwood Academic, Chur.

    Google Scholar 

  25. I am grateful to Slava Mukhanov for pointing out to me that Linde’s contour rotation and the tunneling boundary condition give different wave functions and to Andrei Linde for a discussion of this point.

    Google Scholar 

  26. Hawking, S.W. and Page, D.N. (1986) Nucl. Phys. B264, 185.

    Article  ADS  MathSciNet  Google Scholar 

  27. Grishchuk, L.P. and Rozhansky, L.V. (1988) Phys. Lett. B208, 369.

    ADS  MathSciNet  Google Scholar 

  28. Barvinsky, A.O. and Kamenshchik, A.Y. (1994) Phys. Lett. B332, 270.

    ADS  Google Scholar 

  29. Binnetruy, P. and Gaillard, M.K. (1986) Phys. Rev. D34, 3069.

    ADS  Google Scholar 

  30. Banks, T. et. al. (1994) Modular Cosmology, Rutgers Preprint RU-94–93.

    Google Scholar 

  31. Thomas, S. (1995) Moduli Inflation from Dynamical Supersymmetry Breaking, SLAC Preprint SLAC-PUB-95–6762.

    Google Scholar 

  32. The most general factor ordering consistent with reparametrization in variance allows an extra term ξa-2ℜ(ϕ) in Eq.(49). Here, ℜ is the scalar curvature of the moduli space and ξ is a numerical coefficient. Addition of such a term modifies the potential U(α, ϕ) but does not change the conclusions of Sec. 4.2.

    Google Scholar 

  33. Horne, J. and Moore, G. (1994) Nucl. Phys. B432, 109.

    Article  ADS  MathSciNet  Google Scholar 

  34. Gell-Mann, M. (1994) The Quark and the Jaguar, Freeman, New York.

    MATH  Google Scholar 

  35. Strominger, A. (1995) Massless Black Holes and Conifolds in String Theory, hepth/9504047.

    Google Scholar 

  36. The probability distribution for a Brans-Dicke field (which is similar to the dilaton of superstring theories) was discussed, using a different approach, by Garcia-Bellido and Linde [37, 38].

    Google Scholar 

  37. Garcia-Bellido, J. and Linde, A.D. (1995) Phys. Rev. D51, 429.

    ADS  MathSciNet  Google Scholar 

  38. Garcia-Bellido, J., Linde, A.D. and Linde, D.A. (1994) Phys. Rev. D50, 730

    ADS  Google Scholar 

  39. Vilenkin, A. (1995) Phys. Rev. Lett. 74, 846.

    Article  ADS  Google Scholar 

  40. This and the following sections are partly based on my papers [39, 55]. Related ideas were discussed by Albrecht [41] and by Garcia-Bellido and Linde [37]

    Google Scholar 

  41. Albrecht, A. (1995) in The Birth of the Universe and Fundamental Forces, ed. by F. Occhionero, Springer-Verlag.

    Google Scholar 

  42. Carter, B. (1974) in I.A.U. Symposium, Vol 63, ed. by M.S. Longair, Reidel, Dordrecht; (1983) Philos. Trans. R. Soc. London A310, 347; Carr, B.J. and Rees, M.J. (1979) Nature (London) 278, 605; Barrow, J.D. and Tipler, F.J. (1986) The Anthropic Cosmological Principle, Clarendon, Oxford.

    Google Scholar 

  43. Vilenkin, A. and Shellard, E.P.S. (1994) Cosmic Strings and Other Topological Defects, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  44. Lazarides, G., Panagiotakopoulos, C. and Shafi, Q.(1986) Phys. Rev. Lett. 56, 432; (1987) Phys. Lett. 183B, 289.

    Article  ADS  Google Scholar 

  45. Linde, A.D. (1994) Phys. Rev. D49, 748; Copeland, E.J. et. al. (1994) Phys. Rev. D49, 6410.

    ADS  Google Scholar 

  46. I am grateful to Andrei Linde for pointing out to me that hybrid inflation can give sufficiently large density fluctuations, even with flat potentials.

    Google Scholar 

  47. Rees, M.J. (1983) Philos. Trans. R. Soc. London A310, 311.

    Article  ADS  Google Scholar 

  48. Weinberg, S. (1987) Phys. Rev. Lett. 59, 2607; (1989) Rev. Mod. Phys. 61, 1.

    Article  ADS  Google Scholar 

  49. see, e.g., Carroll, S.M., Press, W.H. and Turner, E.L. (1992) Ann. Rev. Astron. Astrophys. 30, 499.

    Article  ADS  Google Scholar 

  50. This argument assumes that the probability distribution for ρv in the range of interest is nearly flat. It is possible, however, that the ‘fundamental’ variable that has a flat distribution at sub-Planckian scales is the characteristic energy scale η = tex. Then the discrepancy between the anthropic and observational bounds on η is only by a factor ~ 2.

    Google Scholar 

  51. More exactly, we look for the values of ρv that achieve a balance between fine-tuning and maximizing the amount of matter in galaxies. To make this quantitative, let w(ρv)dpv be the probability distribution for ρv for the nucleating universes, and let f(pv) be the fraction of baryonic matter that ends up in galaxies at a given value of ρv. (Here I assume that ρv has a continuous spectrum). Then the most probable values of pv are found by maximizing the product fv)w(ρvv.

    Google Scholar 

  52. Vilenkin, A. (1983) Phys. Rev. D27, 2848.

    ADS  MathSciNet  Google Scholar 

  53. Linde, A.D. (1986) Phys. Lett. B175, 395.

    ADS  Google Scholar 

  54. Linde, A.D., Linde, D.A. and Mezhlumian, A. (1994) Phys. Rev. D49, 1783.

    ADS  Google Scholar 

  55. Vilenkin, A. (1995) Making Predictions in Eternally Inflating Universe, gr-qc/9505031.

    Google Scholar 

  56. Starobinsky, A.A. (1986) in Current Topics in Field Theory, Quantum Gravity and Strings, ed. by H.J. de Vega and N. Sanchez, Springer, Heidelberg.

    Google Scholar 

  57. Aryal, M. and Vilenkin, A. (1987) Phys. Lett. B199, 351.

    ADS  MathSciNet  Google Scholar 

  58. Borde, A. and Vilenkin, A. (1994) Phys. Rev. Lett. 72, 3305; Borde, A. (1994) Phys. Rev. D50, 3392.

    Article  ADS  Google Scholar 

  59. A combined approach using both quantum cosmology and eternal inflation would be necessary only if {αj} split into groups, such that transitions between different groups are disallowed, and the absolute minimum of γ(α) is attained in more than one group.

    Google Scholar 

  60. Linde, A.D. (1994) Phys. Lett. B327, 208; Vilenkin, A. (1994) Phys. Rev. Lett. 72, 3137.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vilenkin, A. (1996). Predictions from Quantum Cosmology. In: Sánchez, N., Zichichi, A. (eds) String Gravity and Physics at the Planck Energy Scale. Mathematical and Physical Sciences, vol 476. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0237-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0237-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6589-4

  • Online ISBN: 978-94-009-0237-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics