Skip to main content

Solving Linear Recurrences from Differential Equations in the Exponential Manner and Vice Versa

  • Chapter
Applications of Fibonacci Numbers
  • 272 Accesses

Abstract

While the ordinary generating function (OGF) for the Fibonacci-Sequence is well known,

$$ F\left( z \right) = \sum {{f_n}{z^n} = \frac{z}{{1 - z - {z^2}}}\left( {{\text{convergent for }}\left| z \right| < \frac{1}{2}\left( {\sqrt 5 - 1} \right)} \right)} $$

the exponential generating function (EGF)

$$ f\left( z \right) = \sum {{f_n}\frac{{{z^n}}}{{n!}} = \frac{1}{{\sqrt 5 }}\left( {{e^{\frac{1}{2}\left( {1 + \sqrt 5 } \right)z}} - {e^{\frac{1}{2}\left( {1 - \sqrt 5 } \right)z}}} \right)} \left( {z \in C} \right) $$

is not quite so common. But the latter representation is interesting with two respects: First, the well known Euler-Binet-formula is directly recognizable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and Stegun, I.A. (eds).), Handbook of mathematical functions. Dover Publ. Co., New York 1965.

    Google Scholar 

  2. Berge, C., “Sur un nouveau calcul symbolique et ses applications”. Journal Math. pur. appi, Vol. 29.9 (1950): pp. 245–274.

    MathSciNet  Google Scholar 

  3. Comtet, L., Advanced combinatorics. Reidel Publ. Co., Dordrecht 1974.

    MATH  Google Scholar 

  4. Doetsch, G. Handbuch der Laplace-Transformation Vol. I, Birkhauser, Basel 1950, Vol. Ill, Birkhauser, Basel 1956.

    MATH  Google Scholar 

  5. Forster, O., Analysis II. Vieweg, Braunschweig 1991 (First ed. 1977).

    Google Scholar 

  6. Jordan, C., Calculus of finite differences. Chelsea Publ. Co., New York 1950 (First ed. 1947).

    MATH  Google Scholar 

  7. Norlund, N.E., Vorlesungen über Differenzenrechnung. Chelsea Publ. Co., New York 1954 (First ed. 1923).

    Google Scholar 

  8. Oberschelp, W., “Exponential generating functions as solutions of linear differential equations and finite differences”. To appear.

    Google Scholar 

  9. Riordan, J., An introduction to combinatorial analysis. Wiley, New York-London, 1958.

    MATH  Google Scholar 

  10. Roman, S., “The harmonic logarithms and the binomial formula”. Journal Comb. Theory, Series A, Vol. 63 (1993): pp. 143–163.

    Article  MathSciNet  MATH  Google Scholar 

  11. Rota, G.C., Finite operator calculus. Academic Press, New York, 1975.

    MATH  Google Scholar 

  12. Sloane, N.J.A., A handbook of integer sequences. Academic Press, New York, 1973.

    MATH  Google Scholar 

  13. Spiegel, M.R., Applied differential equations. Prentice Hall, Englewood Cliffs, 1967.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Oberschelp, W. (1996). Solving Linear Recurrences from Differential Equations in the Exponential Manner and Vice Versa. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0223-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0223-7_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6583-2

  • Online ISBN: 978-94-009-0223-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics