Skip to main content

The Wythoff and the Zeckendorf Representations of Numbers are Equivalent

  • Chapter

Abstract

The quintessence of many application of Fibonacci numbers is the binary substitution sequence 1→10, 0→1. The infinite sequence generated this way is self-similar and quasiperiodic. See refs. [7, 16] for details on this rabbit or golden sequences. It is intimately related to Wythoffs complementary sequences which cover the natural numbers ([·] is the greatest integer function)

$$ A(m): = \left\lfloor {m\varphi } \right\rfloor ,\,B(m): = \left\lfloor {m{\varphi ^2}}\right\rfloor ,\,m \in \,N,{\varphi ^2} = \varphi + 1,\,\varphi > 0. $$
(1)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergum, G.E. and Hoggatt, V.E., Jr. “Some extensions of Wythoff pair sequences”. The Fibonacci Quarterly, Vol. 18 (1980): pp. 28–33.

    MathSciNet  MATH  Google Scholar 

  2. Brown, T.C. “Descriptions of the characteristic sequence of an irrational”. Canad. Math. Bull, Vol. 36 (1993): pp. 15–21.

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlitz, L. Scoville, R. and Hoggatt, V.E. Jr. “Fibonacci representations”. The Fibonacci Quarterly, Vol. 10 (1972): pp. 1–28, ibid. pp. 527–530.

    MathSciNet  MATH  Google Scholar 

  4. Daykin, D.E. “Representation of natural numbers as sums of generalised Fibonacci numbers”. Journ. London Math. Soc. Vol. 35 (1960): pp. 143–166.

    Article  MathSciNet  MATH  Google Scholar 

  5. Fraenkel, A.S., Levitt, J. and Shimshoni, M. “Characterization of the set of values f(n)=[na], n=1,2,....”. Discrete Math., Vol. 2 (1972): pp. 335–345.

    Article  MathSciNet  MATH  Google Scholar 

  6. Fraenkel, A.S. “How to beat your Wythoff games’ opponent on three fronts”. Am. Math. Month., Vol. 89 (1982): pp. 353–361.

    Article  MathSciNet  MATH  Google Scholar 

  7. Gardner, M. Penrose Tiles to Trapdoor Ciphers, W.H. Freeman, New York, 1988, ch. 2, ch. 8.

    Google Scholar 

  8. Hoggatt, V.E. Jr . Fibonacci and Lucas Numbers, Houghton Mifflin, Boston, 1969, ch. 12.

    MATH  Google Scholar 

  9. Hoggatt, V.E. Jr. and Bicknell-Johnson, M. “Composition arrays generated by Fibonacci numbers”. The Fibonacci Quarterly, Vol. 20 (1982): pp. 122–128.

    MATH  Google Scholar 

  10. Hoggatt, V.E. Jr. and Bicknell-Johnson, M. “Representations of integers in terms of greatest integer functions and the golden section ratio”. The Fibonacci Quarterly, Vol. 17 (1979): pp. 306–318.

    MathSciNet  MATH  Google Scholar 

  11. Hoggatt, V.E. Jr. and Bicknell-Johnson, M. edts. A collection of Manuscripts Related to the Fibonacci Sequence. The Fibonacci Association, Santa Clara, California, 1980.

    MATH  Google Scholar 

  12. Horadam, A.F. “Wythoff pairs”. The Fibonacci Quarterly, Vol. 16 (1978): pp. 147–151.

    MathSciNet  MATH  Google Scholar 

  13. Kimberling, C. “The Zeckendorf array equals the Wythoff Array”. The Fibonacci Quarterly, Vol. 33 (1995): pp. 3–8.

    MathSciNet  MATH  Google Scholar 

  14. Lang, W . “Fibonacci chain polynomials: identities from self-similarity”. Proceedings of the “Second International workshop on Harmonic Oscillators”, edts. Harr, D. and Wolf, K.B., NASA conference Publications 3286, 1995, pp. 39–44.

    Google Scholar 

  15. Morrison, D.R. “A Stolarsky Array of Wythoff pairs”, in ref. [11], pp. 134–136.

    Google Scholar 

  16. Schroeder, M . Fractals, Chaos, Power Laws, W.H. Freeman, New York, 1988, ch. 1, ch. 13.

    Google Scholar 

  17. Silber, R. “A Fibonacci property of Wythoff pairs”. The Fibonacci Quarterly, Vol. 14 (1976): pp. 380–384. ibid.: “Wythoffs Nim and Fibonacci representations”. 15 (1977): pp. 85–88.

    MathSciNet  MATH  Google Scholar 

  18. Stolarsky, K.B. “Beatty sequences, continued fractions, and certain shift operators”. Canad. Math. Bull., Vol. 19.4 (1976): pp. 473–482.

    Article  MathSciNet  Google Scholar 

  19. Turner, J.C. “The alpha and the omega of the Wythoff pairs”. The Fibonacci Quarterly, Vol. 27.1 (1989): pp. 76–86.

    Google Scholar 

  20. Vajda, S. Fibonacci & Lucas numbers, and the golden section, Ellis Horwood, Chichester, U. K., 1989, chs. IX, X.

    MATH  Google Scholar 

  21. Wythoff, W.A. “A modification of the game of Nim”. Nieuw. Archief voor Wiskunde VII (1907): pp. 199–202.

    Google Scholar 

  22. Zeckendorf, E . “Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas”. Bull, de la Société Royale des Sciences de Liége, Vol. 41.3–4 (1972): pp. 179–182 (with the proof of 1939).

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lang, W. (1996). The Wythoff and the Zeckendorf Representations of Numbers are Equivalent. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0223-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0223-7_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6583-2

  • Online ISBN: 978-94-009-0223-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics