Skip to main content

Conjugation in aquatic environments

  • Chapter
Molecular Microbial Ecology Manual

Abstract

Concerns with the horizontal exchange of genetic material by conjugation in aquatic environments arise from two issues. The first relates to conjugation as a mechanism that promotes genetic and physiological diversity in the aquatic microbial community [24]. The second arises from the need to regulate applications of genetically engineered microbes (GEMs) in environmental management practices [11, 14]. An understanding of conjugation in situ is needed to address both issues and this necessitates the development of experimental approaches and methods that enable following conjugal gene transfer among aquatic microbial populations in their natural habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altherr RM, Kasweck KL (1982) In situ studies with membrane diffusion chambers of antibiotic resistance transfer in Escherichia coli. Appl Environ Microbiol 44: 838–843.

    Google Scholar 

  2. Awong J, Britton G, Chaundry R (1990) Microcosms for assessing survival ofgenetically engineered microorganisms in aquatic environments. Appl Environ Microbiol 56: 977–983.

    Google Scholar 

  3. Bale MJ, Fry JC, Day MJ (1988) Transfer and occurrence of large mercury resistance plasmids in river epilithon. Appl Environ Microbiol 54: 972–978.

    Google Scholar 

  4. Barkay T, Gillman M, Liebert C (1990) Genes encoding mercuric reductases from selected gram-negative aquatic bacteria have a low degree of homology with merA of transposon Tn501. Appl Environ Microbiol 56: 1695–1701.

    Google Scholar 

  5. Barkay T, Liebert C, Gillman M (1993) Conjugal gene transfer to aquatic bacteria detected by the generation of a new phenotype. Appl Environ Microbiol 59: 807–814.

    Google Scholar 

  6. Barkay T, Kroer N, Rasmussen LD, Sørensen SJ (1995) Conjugal transfer at natural population densities in a microcosm simulating an estuarine environment. FEMS Microbiol Ecol 16: 43–54.

    Article  Google Scholar 

  7. De Lorenzo V, Herrero M, Jakubzik M, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172: 6568–6572.

    Google Scholar 

  8. Fulthorpe RR, Wyndham RC (1992) Involvement of a chlorobenzoatecatabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichloro-phenoxyacetic acid in a freshwater ecosystem. Appl Environ Microbiol 58: 314–325.

    Google Scholar 

  9. Fulthorpe RR, Wyndham RC (1991) Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem. Appl Environ Microbiol 57: 1546–1553.

    Google Scholar 

  10. Goodman AE, Hild E, Marshall KC, Hermansson H (1993) Conjugative plasmid transfer between bacteria under simulated marine oligotrophic conditions. Appi Environ Microbiol 59: 1035–1040.

    Google Scholar 

  11. Halvorson HO, Pramer D, Rogul M (1985) Engineered Organisms in the Environment: Scientific Issues. American Society for Microbiology, Washington D.C.

    Google Scholar 

  12. Hoagland DR, Arnon DI (1950) The Water Culture Method for Growing Plants without Soil. Circular 347. California Agricultural Experimental Station, Barkely, CA.

    Google Scholar 

  13. Jones GW, Baines L, Genthner FJ (1991) Heterotrophic bacteria of the freshwater neuston and their ability to act as plasmid recipients under nutrients deprived conditions. Microb Ecol 22: 15–25.

    Article  Google Scholar 

  14. Klingmüller W (1988) Risk Assessment for Deliberate Releases: The Possible Impact of Genetically Engineered Microorganisms on the Environment. Springer-Verlag KG, Berlin.

    Book  Google Scholar 

  15. Kroer N, Coffin RB (1992) Microbial trophic interactions in aquatic microcosms designed for testing genetically engineered microorganisms: A field comparison. Microb Ecol 23: 143–157.

    Article  Google Scholar 

  16. Kroer N, Coffin RB, Jørgensen NOJ (1994) Comparison of microbial trophic interactions in aquatic microcosms designed for the testing of introduced microorganisms. Environ Tox Chem 13: 247–257.

    Article  Google Scholar 

  17. Levy SB, Miller RV (1989) Gene Transfer in the Environment. McGraw-Hill Publishers Co., New York.

    Google Scholar 

  18. Liang LL, Sinclair JL, Mallory LM, Alexander M (1982) Fate in model ecosystems of microbial species of potential use in genetic engineering. Appl Environ Microbiol 44: 708–714.

    Google Scholar 

  19. Mancini P, Fertels S, Nave D, Gealt MA (1987) Mobilization of plasmid pHSV106 from Escherichia coli HB101 in a laboratory-scale waste treatment facility. Appl Environ Microbiol 53: 665–671.

    Google Scholar 

  20. Munro PM, Gauthier, MJ Lamond FM (1987) Changes in Echerichia coli cells starved in seawater or grown in seawater-wastewater mixtures. Appl Environ Microbiol 53: 1476–1488.

    Google Scholar 

  21. O’Morchoe SB, Ogunseitan O, Sayler GS, Miller RV (1988) Conjugal transfer of R68.45 and FP5 between Pseudomonas aeruginosa strains in a freshwater environment. Appl Environ Microbiol 54: 1923–1929.

    Google Scholar 

  22. Pettibone GW, Sullivan SA, Shiaris HP (1987) Comparative survival of antibiotic-resistant and sensitive fecal indicator bacteria in estuarine water. Appl Environ Microbiol 53: 1241–1245.

    Google Scholar 

  23. Pritchard PH, Bourquin AW (1984) The use of microcosms for evaluation of interactions between pollutants and microorganisms. Adv Microb Ecol 7: 133–215.

    Article  Google Scholar 

  24. Reanney DC, Gowland PC, Slater H (1983) Genetic interactions among microbial communities. In: Bull AT, Slater JH (eds) Microbial Interactions and Communities, Vol. 1, pp. 379–421. Academic Press Inc., New York.

    Google Scholar 

  25. Rochelle PA, Fry JC, Day MJ (1989) Factors affecting conjugal transfer of plasmids encoding mercury resistance from pure cultures annd mixed natural suspensions of epilithic bacteria. J Gen Microbiol 135: 409–424.

    Google Scholar 

  26. Sandaa RA, Enger Ø (1994) Transfer in marine sediments of the naturally occurring plasmid pRASl encoding multiple antibiotic resistance. Appl Environ Microbiol 60: 4234–4238.

    Google Scholar 

  27. Saouter E, Gillman M, Turner R, Barkay T (1995) Development of field validation of a microcosm to simulate the mercury cycle in a contaminated pond. Environ Toxicol Chem 14: 69–77.

    Article  Google Scholar 

  28. Scanferlato VS, Orvos DR, Cairns Jr J, Lacy GH (1989) Genetically engineered Envinia carotovora in aquatic microcosms: Survival and effects on functional groups of indigenous bacteria. Appl Environ Microbiol 55: 1477–1482.

    Google Scholar 

  29. Silver S, Walderhaug M (1992) Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56: 195–228.

    Google Scholar 

  30. Sinclair JL, Alexander M (1984) Role of resistance to starvation in bacterial survival in sewage and lake water. Appl Environ Microbiol 48: 410–415.

    Google Scholar 

  31. Smit E, Van Elsas JD (1990) Determination of plasmid transfer frequency in soil: Consequences of bacterial mating on selective agar media. Curr Microbiol 21: 151–157.

    Article  Google Scholar 

  32. Smit E, Van Elsas JD, Van Veen JA, De Vos WM (1991). Detection of plasmid transfer from Pseudomonas fluorescens to indigenous bacteria in soil by using bacteriophage fR2f for donor counterselection. Appl Environ Microbiol 57: 3482–3488.

    Google Scholar 

  33. Sobecky PA, Schell MA, Moran MA, Hodson RE (1992) Adaptation of model genetically engineered microorganisms to lake water: growth rate enhancements and plasmid loss. Appl Environ Microbiol 58: 3630–3637.

    Google Scholar 

  34. Summers AO, Barkay T (1989) Metal resistance genes in the environment. In: Levy SB, Miller RV (eds) Gene Transfer in the Environment, pp. 287–308. McGraw-Hill Publishing Co., New York.

    Google Scholar 

  35. Sundin GW, Demezes DH, Bender CL (1994) Genetic and plasmid diversity within natural populations of Pseudomonas syringae with various exposures to copper and streptomycin bactericides. Appl Environ Microbiol 60: 4421–4431.

    Google Scholar 

  36. Sørensen SJ (1991) Survival of Escherichia coli K12 in seawater. FEMS Microbiol Ecol 85: 161–168.

    Article  Google Scholar 

  37. Sørensen SJ (1992) Mobilization of non-conjugative pBR322-derivative plasmids from laboratory strains of Escherichia coli to bacteria isolated from seawater. Microb Releases 1: 17–22.

    Google Scholar 

  38. Sørensen SJ (1993) Transfer of plasmid RP4 from E. coli K12 to indigenous bacteria in seawater. Microb Releases 2: 135–141.

    Google Scholar 

  39. Sørensen SJ, Barkay T (1991) Experimental approach for the detection of gene transfer from GEM’s to bacteria indigenous to aquatic environments. 3rd Symposium on Bacterial Genetics and Ecology. Villefranche sur Mer, France, Nov. 20–22, 1991.

    Google Scholar 

  40. Top E, De Smet I, Verstraete W, Dijkmans R, Mergeay M (1994) Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol 60: 831–839.

    Google Scholar 

  41. Van der Meer JR, De Vos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56: 254–259.

    Google Scholar 

  42. Wilkins B, Lanka E (1993) DNA prosessing and replication during plasmid transfer between gram-negative bacteria. In: Clewell DB (ed) Bacterial Conjugation, pp. 105–136. Plenum Press, New York.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sørensen, S.J., Kroer, N., Sørensen, E., Sengeløv, G., Barkay, T. (1996). Conjugation in aquatic environments. In: Akkermans, A.D.L., Van Elsas, J.D., De Bruijn, F.J. (eds) Molecular Microbial Ecology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0215-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0215-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7660-6

  • Online ISBN: 978-94-009-0215-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics