Skip to main content

Antibiotic resistance as a marker for tracking bacteria in the soil ecosystem

  • Chapter
Molecular Microbial Ecology Manual

Abstract

To study the fate of microorganisms introduced into the soil ecosystem, it is necessary to be able to specifically detect these bacteria and to distinguish them from the (natural) indigenous soil population. Soil may contain between 107 and 109 culturable bacteria per gram [1]. The presence of such a large number of bacteria, capable of growing on (non-selective) general media, obviously prevents the tracking of introduced bacteria which do not have a specific selectable marker. One can calculate a theoretical limit of detection, assuming that one colony out of 200 from a plate can be isolated and recognized by some specific trait which is not present in the indigenous bacteria. The detection limit of such a microorganism will be between 5 × 104 and 5 × 106 cells per gram of soil (using the method described in this chapter). Introduced microorganisms without such a recognizable trait will have even higher detection limits and it will be impossible to enumerate low numbers of such strains [2, 24]. Therefore, selection for the introduced organism is necessary [12]. In experiments with introduced strains in soil, cell numbers may range between 102 and 108 cfu per gram of soil [26], and selectable traits should ideally permit the specific detection of any number of cfu in this range. One of the problems often encountered is the occurrence of natural populations of microorganisms in soil with the same selectable trait. For instance, bacterial populations in soil and rhizosphere have often found to be resistant to various antibiotics [41].

E.S. performed the research described here at IPO-DLO and is presently employed by the RIVM

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander M (1977) Introduction to Soil Microbiology. John Wiley & Sons, New York.

    Google Scholar 

  2. Barry GF (1986) Permanent insertion of foreign genes into the chromosome of bacteria. Biotechnology 4: 446–449.

    Article  Google Scholar 

  3. Berg DE, Berg CM (1983) The prokaryotic transposable element Tn5. Biotechnology 1983: 417–435.

    Article  Google Scholar 

  4. Biel SW, Hartl DL (1983) Evolution of transposons: natural selection for Tn5 in Escherichia coli K12. Genetics 103: 581–592.

    Google Scholar 

  5. Caldwell BA, Ye C, Griffiths RP, Moyer CL, Morita RY (1989) Plasmid expression and maintenance during long-term starvation-survival of bacteria in well water. Appl Environ Microbiol 55: 1860–1864.

    Google Scholar 

  6. Compeau G, Jadoun Al-Achi B, Platsouka E, Levy SB (1988) Survival of rifampicin resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl Environ Microbiol 54: 2432–2438.

    Google Scholar 

  7. DeFlaun MF, Tanzer AS, McAteer AL, Marshall B, Levy SB (1990) Development of an adhesion assay and characterization of an adhesion-deficient mutant of Pseudomonas fluorescens. Appl Environ Microbiol 56: 112–119.

    Google Scholar 

  8. DeLorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis promotor probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172: 6568–6572.

    Google Scholar 

  9. Devanas MA, Stotzky G (1986) Fate in soil of a recombinant plasmid carrying a Drosophila gene. Curr Microbiol 13: 279–283.

    Article  Google Scholar 

  10. Drahos DJ, Hemming BD, McPherson S (1986) Tracking recombinant organisms in the environment: β-galactosidase as a selectable non-antibiotic marker for fluorescent pseudomonads. Biotechnol 4: 439–444.

    Article  Google Scholar 

  11. Evguenieva-Hackenberg E, Selenska-Pobell, Klingmuller W (1994) Persistance and stability of genetically manipulated derivatives of Enterobacter agglomerans in soil microcosms. FEMS Microbiol Ecol 15: 179–192.

    Article  Google Scholar 

  12. Fredrickson JK, Elliot LF (1985) Colonization of winter wheat roots by inhibitory rhizobacteria. Soil Sci Soc Am J 49: 1173–1177.

    Article  Google Scholar 

  13. Fredrickson JK, Bezdicek DF, Brockman FJ, Li SW (1988) Enumeration of Tn5 mutant bacteria in soil by using a most-probable-number-DNA hybridisation procedure and antibiotic resistance. Appl Environ Microbiol 54: 446–453.

    Google Scholar 

  14. Genthner FJ, Upadhyay J, Campbell RP, Sharak-Genthner BR (1990) Anomalies in the enumeration of starved bacteria on culture media containing nalidixic acid and tetracycline. Microbiol Ecol 20: 283–288.

    Article  Google Scholar 

  15. Glandorf DCM (1992) Root colonization by fluorescent pseudomonads. PhD thesis, University of Utrecht, The Netherlands.

    Google Scholar 

  16. Griffiths RP Moyer CL, Caldwell BA, Ye C, Morita RY (1990) Long-term starvation induced loss of antibiotic resistance in bacteria Microbiol. Ecol 19: 251–257.

    Google Scholar 

  17. Grunstein M, Hogness DS (1975) Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72: 3961–3965.

    Article  Google Scholar 

  18. Hattori T (1986) Methods of isolation of microorganisms in different physiological states. In: Jensen V, Kjoller A, Sorensen LH (eds) Microbiol Communities in Soil, pp 163–176. Elseviers Applied Science Publishers, London.

    Google Scholar 

  19. Henschke RB, Schmidt FRJ (1990) Plasmid mobilization from genetically engineered bacteria to members of the indigenous soil microflora in situ. Curr Microbiol 20: 105–110.

    Article  Google Scholar 

  20. Herrero M, De Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. Appl Environ Microbiol 172: 6557–6567.

    Google Scholar 

  21. Lam ST, Ellis, DM, Ligon JM (1990) Genetic approaches for studying rhizosphere colonization. Plant Soil 129: 11–18.

    Article  Google Scholar 

  22. Liang LN, Sinclair JL, Mallory LM, Alexander M (1982) Fate in model ecosystems of microbial species of potential use in genetic engineering. Appl Environ Microbiol 44: 708–714.

    Google Scholar 

  23. Lewis DM, Bromfield ESP, Barran LR (1987) Effect of rifampicin resistance on nodulating competativeness of Rhizobium meliloti. Can J Microbiol 33: 343–345.

    Article  Google Scholar 

  24. McCormick D (1986) Detection technology: the key to environmental biotechnology. Biotechnology 4: 419–422.

    Article  Google Scholar 

  25. Mermod N, Ramos JL, Lehrbach PR, Timmis KN (1986) Vector for regulated expression of cloned genes in a wide range of Gram-negative bacteria. J Bacteriol 167: 447–454.

    Google Scholar 

  26. Nijhuis EH, Maat MJ, Zeegers IWE, Waalwijk C, Van Veen JA (1993) Selection of bacteria suitable for introduction into the rhizosphere of grass. Soil Biol Biochem 25: 885–895.

    Article  Google Scholar 

  27. Obukowicz MG, Perlak FJ, Kusano-Kretzmer K, Mayer EJ, Watrud LS (1986) Integration of the delta-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of pseudomonads using Tn5. Gene 45: 327–331.

    Article  Google Scholar 

  28. Pankhurst CE (1977) Symbiotic effectiveness of antibiotic resistant mutants of fast-and slow-growing strains of Rhizobium nodulating lotus species. Can J Microbiol 23: 1026–1033.

    Article  Google Scholar 

  29. Rattray EAS, Prosser JI, Kilham K, Glover LA (1990) Luminescence based nonextractive technique for in situ detection of Escherichia coli in soil. Appl Environ Microbiol 56: 3368–3374.

    Google Scholar 

  30. Recorbet G, Givaudan A, Steinberg C, Bally R, Normand P, Fauri G (1992) Tn5 to assess soil fate of genetically marked bacteria: screening for aminoglycoside-resistance advantage and labelling specificity. FEMS Microbiol Ecol 86: 187–194.

    Article  Google Scholar 

  31. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning; A Laboratory Manual, 2nd ed. Cold Spring Harbor, New York.

    Google Scholar 

  32. Sayler GS, Shields MS, Tedford ET, Breen A, Hooper WS, Sirotkin KH, Davis JW (1985) Application of DNA-DNA hybridization to the detection of catabolic genotypes in environmental samples. Appl Environ Microbiol 49: 1295–1303.

    Google Scholar 

  33. Shaw JJ, Kado CI (1986) Development of a Vibrio bioluminescence gene-set to monitor phytopathogenic bacteria during the ongoing disease process in a non-disruptive manner. Biotechnology 4: 560–564.

    Article  Google Scholar 

  34. Simon R (1984) High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196: 413–420.

    Article  Google Scholar 

  35. Simon R, Priefer U, Pühler A (1983) Vector plasmids for in vivo and in vitro manipulations of Gram-negative bacteria. In: Pühler A (ed) Molecular Genetics of the Bacteria-plant Interaction, pp 89–106. Springer-Verlag, Berlin.

    Google Scholar 

  36. Smalla K, Van Overbeek LS, Pukall R, Van Elsas JD (1993) Prevalence of nptII and Tn5 in kanamycin-resistant bacteria from different environments. FEMS Microbiol Ecol 13: 47–58.

    Article  Google Scholar 

  37. Smit E, Van Elsas JD (1990) Determination of plasmid transfer frequency in soil: Consequences of bacterial mating on selective agar media. Curr Microbiol 21: 151–157.

    Article  Google Scholar 

  38. Smit E (1994) Conjugal gene transfer between bacteria in soil and rhizosphere. PhD thesis, Agricultural University Wageningen, the Netherlands.

    Google Scholar 

  39. Smit E, Van Elsas JD (1992) Conjugal gene transfer in the soil environment; new approaches and developments. In: Gauthier MJ (ed) Gene Transfers and Environment. Springer Verlag, Berlin.

    Google Scholar 

  40. Stotzky G (1989) Gene transfer among bacteria in soil. In: Levy SB, Miller RV (eds) Gene Transfer in the Environment, pp 165–222. McGraw-Hill, New York.

    Google Scholar 

  41. Trevors JT, Barkay T, Bourquin AW (1987) Gene transfer among bacteria in soil and aquatic environments: a review. Can J Microbiol 33: 191–196.

    Article  Google Scholar 

  42. Trevors JT, Van Elsas JD (1989) A review of selected methods in environmental microbial genetics. Can J Microbiol 35: 895–901.

    Article  Google Scholar 

  43. Turco RF, Moorman TB, Bezdocek DF (1986) Effectiveness and competitiveness of spontaneous antibiotic-resistant mutants of Rhizobium leguminosarum and Rhizobium japonicum. Soil Biol Biochem 18: 259–262.

    Article  Google Scholar 

  44. Van Elsas JD, Dijkstra AF, Govaert JM, Van Veen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilus in two soils of different texture in field plots. FEMS Microbiol Ecol 48: 151–160.

    Article  Google Scholar 

  45. Van Elsas JD, Pereira MTPRR (1986) Occurrence of antbiotic resistance among bacilli in Brazilian soils and the possible involvement of resistance plasmids. Plant Soil 94: 213–226.

    Article  Google Scholar 

  46. Van Elsas JD, Van Overbeek LS, Feldmann AM, Dullemans AM, De Leeuw O (1991) Survival of genetically engineered Pseudomonas fluorescens in soil in competiion with the parent strain. FEMS Micribiol Ecol 85: 53–64.

    Article  Google Scholar 

  47. Waalwijk C, Dullemans A, Maat C (1991) Construction of a bioinsecticidal rhizosphere isolate of Pseudomonas fluorescens. FEMS Microbiol Lett 77: 257–264.

    Article  Google Scholar 

  48. Weiler DM (1984) Distribution of a Take-all suppressive strain of Pseudomonas fluorescens on seminal roots of winter wheat. Appl Environ Microbiol 48: 897–899.

    Google Scholar 

  49. Winstanley C, Morgan JAW, Pickup RW, Jones JG, Saunders JR (1989) Differential regulation of lambda Pl and Pr promoters by a cI repressor in a broad-host-range thermoregulated plasmid marker system. Appl Environ Microbiol 55: 771–777.

    Google Scholar 

  50. Zdor RE, Pueppke GG (1990) Nodulation competativeness of Tn5-induced mutants of Rhizobium fredii USDA208 that are altered in motility and extracellular polysaccharide production. Can J Microbiol 37: 52–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smit, E., Wernars, K., Van Elsas, J.D. (1996). Antibiotic resistance as a marker for tracking bacteria in the soil ecosystem. In: Akkermans, A.D.L., Van Elsas, J.D., De Bruijn, F.J. (eds) Molecular Microbial Ecology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0215-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0215-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7660-6

  • Online ISBN: 978-94-009-0215-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics