Skip to main content

Disjointness Preserving Operators

  • Chapter
Vector Lattices and Integral Operators

Part of the book series: Mathematics and Its Applications ((MAIA,volume 358))

Abstract

Disjointness preserving operators have its own theory which is very rich in results and includes such questions as boundedness, continuity, spectral and geometric properties, multiplicativity, compactness, etc. The list of publications devoted to studying disjointness preserving operators is so extensive that it could serve as a reason for a separate review. Leaving aside many rather interesting directions, we will only concentrate our attention on analytic representation and decomposition of disjointness preserving operators. B.Z. Vulikh [7–9] was one of the first who considered these questions. Later, disjointness preserving operators were studied by Yu. A. Abramovich, E. L. Arenson, D. R. Hart, A. K. Kitover, A. V. Koldunov, P. T. N. MacPolin, A. I. Veksler, A. W. Wickstead, A. C. Zaanen, and many others (see, for instance, [1–3, 19, 32, 37, 41, 42]). We also observe that the question of analytic representation of disjointness preserving operators includes such a powerful direction as descriptions of isometries of vector-valued L P-spaces (the so-called Banach-Stone theorems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich Yu. A., Arenson E. L., and Kitover A. K., “Operators in Banach C(K)-modules and their spectral properties,” Dokl. Akad. Nauk SSSR, 301, No. 3, 525–529 (1988).

    Google Scholar 

  2. Abramovich Yu. A., Veksler A. I., and Koldunov A. V., “On disjointness preserving operators,” Dokl. Akad. Nauk SSSR, 248, No. 5, 1033–1036 (1979).

    MathSciNet  Google Scholar 

  3. Abramovich Yu. A., Veksler A. I., and Koldunov A. V., “Disjointness preserving operators, their continuity and multiplicative representation,” in: Linear Operators and Their Applications [in Russian], Leningrad, Leningrad Ped. Ins t., 1981.

    Google Scholar 

  4. Archangel′skii A. V. and Ponomarev V. I., Fundamentals of General Topology in Problems and Exercises [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  5. Veksler A. I., “On structure orderability of algebras and rings,” Dokl. Akad. Nauk SSSR, 164, No. 2, 259–262 (1965).

    MathSciNet  Google Scholar 

  6. Veksler A. I. and Geiler V. A., “On the order and disjoint completeness of semiordered linear spaces,” Sibirsk. Mat. Zh., 13, No 1, 43–51 (1972).

    MathSciNet  Google Scholar 

  7. Vulikh B. Z., “On multiplicative linear operations,” Dokl. Akad. Nauk SSSR, 41, No. 4, 148–151 (1943).

    Google Scholar 

  8. Vulikh B. Z., “Analytic representation of multiplicative linear operations,” Dokl. Akad. Nauk SSSR, 41, No. 5, 197–201 (1943).

    Google Scholar 

  9. Vulikh B. Z., “Multiplication in semiordered linear spaces and its application to the theory of operations. II,” Mat. Sb., 22, No. 2, 267–317 (1948).

    Google Scholar 

  10. Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  11. Kantorovich L. V., “To the general theory of operations in semiordered spaces,” Dokl. Akad. Nauk SSSR, 1, No. 7, 271–274 (1936).

    Google Scholar 

  12. Kantorovich L. V., Vulikh B. Z., and Pinsker A. G., Functional Analysis in Semiordered Spaces [in Russian], Gostekhizdat, Moscow-Leningrad (1950).

    Google Scholar 

  13. Kusraev A. G., Vector Duality and Its Applications [in Russian], Nauka, Novosibirsk (1985).

    MATH  Google Scholar 

  14. Kusraev A. G., “Linear operators in lattice-normed spaces,” in: Studies on Geometry in the Large and Mathematical Analysis. Vol. 9 [in Russian], Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 84–123.

    Google Scholar 

  15. Kusraev A. G. and Kutateladze S. S., Nonstandard Methods of Analysis, Nauka, Novosibirsk (1990); Kluwer, Dordrecht (1994).

    MATH  Google Scholar 

  16. Kusraev A. G. and Strizhevskii V. Z., “Lattice-normed spaces and dominated operators,” in: Studies on Geometry and Functional Analysis. Vol. 7 [in Russian], Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 132–158.

    Google Scholar 

  17. Kutateladze S. S., “Supporting sets of sublinear operators,” Dokl. Akad. Nauk SSSR, 230, No. 5, 1029–1032 (1976).

    MathSciNet  Google Scholar 

  18. Sikorski R., Boolean Algebras [Russian translation], Mir, Moscow (1969).

    MATH  Google Scholar 

  19. Abramovich Yu. A., “Multiplicative representation of disjointness preserving operators,” Indag. Math. (N. S.), 45, No. 3, 265–279 (1983).

    MathSciNet  MATH  Google Scholar 

  20. Abramovich Y. A., Arenson E. L., and Kitover A. K., Banach C(K)–Modules and Operators Preserving Disjointness [Preprint, No. 05808–91], Math. Sci. Res. Inst., Berkeley (1991).

    Google Scholar 

  21. Abramovich Y. A., Arenson E. L., and Kitover A. K., Banach C(K)–Modules and Operators Preserving Disjointness, Harlow, Longman Sci. Tech. (1992). (Pitman Res. Notes Math. Ser.; 277.)

    MATH  Google Scholar 

  22. Abramovich Y. A. and Wickstead A. W., “The regularity of order bounded operators into C(K). II,” Quart. J. Math. Oxford Ser. 2, 44, 257–270 (1993).

    MathSciNet  MATH  Google Scholar 

  23. Bigard A. and Keimel K., “Sur les endomorphismes conservant les polaires d′un groupe reticule archimedién,” Bull. Soc. Math. France, 97, 381–398 (1969).

    MathSciNet  MATH  Google Scholar 

  24. Conrad P. F. and Diem J. E., “The ring of polar preserving endomorphisms of an abelian lattice-ordered group,” Illinois J. Math., 15, 222–240 (1971).

    MathSciNet  Google Scholar 

  25. Ellis A. J., “Extreme positive operators,” Quart. J. Math. Oxford Ser. 2, 15, 342–344 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  26. Espelie M. S., “Multiplicative and extreme positive operators,” Pacific J. Math., 48, 57–66 (1973).

    MathSciNet  Google Scholar 

  27. Gutman A. E., “Banach bundles in the theory of lattice-normed spaces. I. Continuous Banach bundles,” Siberian Adv. Math., 3, No. 3, 1–55 (1993).

    MathSciNet  MATH  Google Scholar 

  28. Gutman A. E., “Banach bundles in the theory of lattice-normed spaces. II. Measurable Banach bundles,” Siberian Adv. Math., 3, No. 4, 8–40 (1993).

    MathSciNet  MATH  Google Scholar 

  29. Gutman A. E., “Banach bundles in the theory of lattice-normed spaces. III. Approximating sets and bounded operators,” Siberian Adv. Math., 4, No. 2, 54–75 (1994).

    MathSciNet  MATH  Google Scholar 

  30. Gutman A. E., “Locally one-dimensional if-spaces and cr-distributive Boolean algebras,” Siberian Adv. Math., 5, No. 2, 99–121 (1995).

    MathSciNet  Google Scholar 

  31. Gutman A. E., “Banach bundles in the theory of lattice-normed spaces. IV. Disjointness preserving operators,” Siberian Adv. Math, (to appear).

    Google Scholar 

  32. Hart D. R., “Some properties of disjointness preserving operators,” Indag. Math., 47, No. 2, 183–197 (1985).

    MathSciNet  MATH  Google Scholar 

  33. Kusraev A. G., “Dominated operators. I,” Siberian Adv. Math., 4, No. 3, 51–82 (1994).

    MathSciNet  MATH  Google Scholar 

  34. Kusraev A. G., “Dominated operators. II,” Siberian Adv. Math., 4, No. 4, 24–59 (1994).

    MathSciNet  MATH  Google Scholar 

  35. Kusraev A. G., “Dominated operators. III,” Siberian Adv. Math., 5, No. 1, 49–76 (1995).

    MathSciNet  MATH  Google Scholar 

  36. Kusraev A. G., “Dominated operators. IV,” Siberian Adv. Math., 5, No. 2, 99–121 (1995).

    MathSciNet  MATH  Google Scholar 

  37. McPolin P. T. N. and Wickstead A. W., “The order boundedness of band preserving operators on uniformly complete vector lattices,” Math. Proc. Cambridge Philos. Soc., 97, No. 3, 481–487 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  38. Meyer M., “Le stabilisateur d′un espace vectoriel réticulé,” C. R. Acad. Sci. Paris Sér. A, 283, 249–250 (1976).

    MATH  Google Scholar 

  39. Phelps R. R., “Extreme positive operators and homomorphisms,” Trans. Amer. Math. Soc., 108, 265–274 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  40. Sikorski R., “On the inducing of homomorphisms by mappings,” Fund. Math., 36, 7–22 (1949).

    MathSciNet  MATH  Google Scholar 

  41. Wickstead A. W., “Representation and duality of multiplication operators on Archimedean Riesz spaces,” Compositio Math., 35, No. 3, 225–238 (1977).

    MathSciNet  MATH  Google Scholar 

  42. Zaanen A. C., “Examples of orthomorphisms,” J. Approx. Theory, 13, No. 2, 192–204 (1975).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gutman, A.E. (1996). Disjointness Preserving Operators. In: Kutateladze, S.S. (eds) Vector Lattices and Integral Operators. Mathematics and Its Applications, vol 358. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0195-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0195-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6571-9

  • Online ISBN: 978-94-009-0195-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics