Skip to main content

Operator Classes Determined by Order Conditions

  • Chapter
Vector Lattices and Integral Operators

Part of the book series: Mathematics and Its Applications ((MAIA,volume 358))

  • 298 Accesses

Abstract

Operator theory is part and parcel of functional analysis whose own name is not unlikely to be consonant with a simplest operator, a functional. The theory of vector and Banach lattices began with distinguishing and studying the order properties of functionals and operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich Yu. A., “Injective hulls of normed structures” Dokl. Akad. Nauk SSSR, 191, No.4,743–745(1971).

    Google Scholar 

  2. Abramovich Yu. A., “On a space of operators acting between Banach lattices”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 73, 188–192 (1977).

    MathSciNet  MATH  Google Scholar 

  3. Aliprantis C. D. and Burkinshaw O., Positive Operators, Academic Press, New York (1985).

    MATH  Google Scholar 

  4. Arendt W. and Voigt J., “Approximation of multipliers by regular operators”, Semesterbericht Funktionalanalysis Tübingen, Wintersemester, 15–31 (1988–1989).

    Google Scholar 

  5. Basile A., Bukhvalov A. V., and Yakubson M. Ya., “The generalized Yosida-Hewitt theorems”, Math. Proc. Cambridge Philos. Soc., 116, 527–533 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bukhvalov A. V., “Spaces of vector-functions and tensor products”, Sibirsk. Mat. Zh., 13, No. 6, 1229–1238 (1972).

    MATH  Google Scholar 

  7. Bukhvalov A. V., “On analytic representation of operators with abstract norm”, Dokl. Akad. Nauk SSSR, 208, No. 5, 1012–1015 (1973).

    MathSciNet  Google Scholar 

  8. Bukhvalov A. V., “On spaces with mixed norm”, Vestnik Leningrad Univ. Mat. Mekh. Astronom., No. 19, 5–12 (1973).

    Google Scholar 

  9. Bukhvalov A. V, “On certain properties of a norm and semiorder in spaces of operators,” in: Optimizatsiya [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk, 1973, No. 12(29), pp. 23–28.

    Google Scholar 

  10. Bukhvalov A. V., “Analytic representation of operators by means of measurable vector-functions”, Vestnik Leningrad.Univ. Mat. Mekh. Astronom., No. 7, 157–158 (1974).

    Google Scholar 

  11. Bukhvalov A. V., “On analytic representation of operators with abstract norm”, Izv. Vyssh. Uchebn. Zaved. Mat., No. 11, 21–32 (1975).

    Google Scholar 

  12. Bukhvalov A. V., “The Hardy spaces of vector-valued functions”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 65, 5–16 (1976).

    MATH  Google Scholar 

  13. Bukhvalov A. V., Supplements to the article “On duality of factors generated by spaces of vector-functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 42, No. 5, 923–927 (1978).

    MathSciNet  MATH  Google Scholar 

  14. Bukhvalov A. V., “Geometric properties of Banach spaces of measurable vector-functions”, Dokl. Akad. Nauk SSSR, 239, No. 6, 1279–1282 (1978).

    MathSciNet  Google Scholar 

  15. Bukhvalov A. V., “Generalization of the Kolmogorov-Nagumo theorem to tensor products” in: Qualitative and Approximate Studies of Operator Equations, Mezhvuz. Sb., Yaroslavl’, 1979, pp. 48–65.

    Google Scholar 

  16. Bukhvalov A. V., “Applications of the methods of the theory of order bounded operators to the theory of operators in Lp spaces”, Uspekhi Mat. Nauk, 38, No. 6, 37–83 (1983).

    MathSciNet  Google Scholar 

  17. Bukhvalov A. V., Integral Operators and Spaces of Measurable Vector-Valued Functions [in Russian], Dis. Dokt. Fiz.-Mat. Nauk, LOMI, Leningrad (1984).

    Google Scholar 

  18. Bukhvalov A. V., “Order bounded operators in vector lattices and spaces of measurable functions”, in: Mathematical Analysis [in Russian], VINITI, Moscow, 1988, pp. 3–63 (Itogi Nauki i Tekhniki, 26).

    Google Scholar 

  19. Bukhvalov A. V., Veksler A. I., and Geĭler V. A., “Normed lattices”, in: Mathematical Analysis [in Russian], VINITI, Moscow, 1980, pp. 125–184 (Itogi Nauki i Tekhniki, 18).

    Google Scholar 

  20. Bukhvalov A. V., “Optimization with compactness and its applications”, Oper. Theory Adv. Appl., 75, 95–112 (1995).

    MathSciNet  Google Scholar 

  21. Diestel J. and Uhl J. J. jr., Vector Measures, Amer. Math. Soc., Providence (1977) (Series: Mathematical Surveys; 15).

    Google Scholar 

  22. Dinculeanu N., Vector Measures, VEB Deutscher Verlag der Wissenschaften, Berlin (1966).

    MATH  Google Scholar 

  23. Dunford N. and Schwartz J. T., Linear Operators. Vol. 1: General Theory [Russian translation], Izdat. Inostr. Lit., Moscow (1962).

    Google Scholar 

  24. Ellis H. W., “A note on Banach function spaces”, Proc. Amer. Math. Soc., 9, 75–81 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  25. Grothendieck A., “Produits tensoriels topologiques et espaces nucléaires”, Mem. Amer. Math. Soc., No. 16 (1955).

    Google Scholar 

  26. Haimos P. R. and Sunder V., Bounded Integral Operators on L2 Spaces, Springer-Verlag, Berlin (1978).

    Google Scholar 

  27. Ionescu Tulcea A. and Ionescu Tulcea C., Topics in the Theory of Lifting, Springer-Verlag, Berlin (1969).

    MATH  Google Scholar 

  28. Kantorovich L. V. and Akilov G. P., Functional Analysis [in Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  29. Kantorovich L. V., Vulikh B. Z., and Pinsker A. G., Functional Analysis in Partially Ordered Spaces [in Russian], Gostekhizdat, Moscow-Leningrad (1950).

    MATH  Google Scholar 

  30. Korotkov V. B., Integral Operators [in Russian], Nauka, Novosibirsk (1983).

    MATH  Google Scholar 

  31. Krasnosel’skiĭ M. A., Positive Solutions to Operator Equations [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  32. Krasnosel’skiĭ M. A., Zabreĭko P. P., Pustyl’nik E. I., and Sobolevskiĭ P. E., Integral Operators in Spaces of Summable Functions [in Russian], Nauka, Moscow (1966).

    MATH  Google Scholar 

  33. Kreĭn S. G., Petunin Yu. I., and Semenov E. M., Interpolation of Linear Operators [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  34. Kusraev A. G., “Linear operators in lattice-normed spaces”, in: Studies on Geometry in the Large and Mathematical Analysis. Vol. 9 [in Russian], Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 84–123.

    Google Scholar 

  35. Kusraev A. G. and Strizhevskiĭ V. Z., “Lattice-normed spaces and dominated operators”, in: Studies on Geometry and Functional Analysis. Vol. 7 [in Russian], Trudy Inst. Mat. (Novosibirsk), Novosibirsk, 1987, pp. 132–158.

    Google Scholar 

  36. Lozanovskiĭ G. Ya., “On localized functionals in vector structures”, in: Function Theory, Functional Analysis, and Their Applications [in Russian], Kharkov, 1974, No. 19, pp. 66–80.

    Google Scholar 

  37. Luxemburg W. A. J. and Zaanen A. C., “The linear modulus of an order bounded linear transformation”, Proc. Kon. Nederl. Akad. Wetensch., A74, No. 5, 422–447 (1971).

    MathSciNet  MATH  Google Scholar 

  38. Mityagin B. S. and Shvarts A. S., “Functors in categories of Banach spaces”, Uspekhi Mat. Nauk, 19, No. 2, 65–130 (1964).

    MATH  Google Scholar 

  39. Nagel R. (editor), “One-parameter semigroups of positive operators”, Lecture Notes in Math., Bd. 1184, S. I-X, 1–460 (1986).

    MATH  Google Scholar 

  40. Nakano H., Modulated Semi-Ordered Linear Spaces, Maruzen Co., LTD, Tokyo (1950).

    Google Scholar 

  41. Nielsen N. J., “On Banach ideals determined by Banach lattices and their applications”, Dissertationes Math. (Rozprawy Mat.), 109, 1–66 (1973).

    Google Scholar 

  42. Schaefer H. H., Banach Lattices and Positive Operators, Springer-Verlag, Berlin etc. (1974).

    MATH  Google Scholar 

  43. Schwarz H. U., Banach Lattices and Operators, Teubner, Leipzig (1984).

    MATH  Google Scholar 

  44. Vladimirov D. A., “To the question concerning compactness of integral operators”, Dokl. Akad. Nauk SSSR, 161, No. 1, 19–22 (1965).

    MathSciNet  Google Scholar 

  45. Vladimirov D. A., “On compactness of integral operators”, Sibirsk. Mat. Zh., 8, No. 4, 764–781 (1967).

    MATH  Google Scholar 

  46. Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  47. Zaanen A. C., Integration, North-Holland, Amsterdam etc. (1967).

    Google Scholar 

  48. Zaanen A. C., Riesz Spaces. Vol. 2, North-Holland, Amsterdam etc. (1983)

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bukhvalov, A.V. (1996). Operator Classes Determined by Order Conditions. In: Kutateladze, S.S. (eds) Vector Lattices and Integral Operators. Mathematics and Its Applications, vol 358. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0195-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0195-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6571-9

  • Online ISBN: 978-94-009-0195-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics