Skip to main content

Transient gene expression and stable genetic transformation into conifer tissues by microprojectile bombardment

  • Chapter
Plant Tissue Culture Manual

Abstract

Genetic tranformation technologies are essential to programs of molecular biology and genetic engineering. Although significant efforts in conifer molecular biology have been initiated since the late 1980s, so far only a limited number of genes have been cloned [1]. Conifers are by far the most difficult plant group for this type of study because of their large genomes and lengthy life cycles. Furthermore, progress has been hindered by the present inefficiencies in gene transfer methods and tissue culture protocols for certain species such as pines. Nevertheless, there is a significant body of literature on gene transfer in several conifer species using Agrobacterium-mediated transformation and other protocols of direct DNA transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Special cover Book
USD 54.99
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charest PJ, Rutledge R (1993) Is genetic engineering a viable option for tree improvement? In: Proceedings of the twenty-fourth meeting of the Canadian Tree Improvement Association, pp 27–40, CTIA proceedings.

    Google Scholar 

  2. Ellis DD (1992) Transformation in Picea In: Bajaj YPS (Ed.) Biotechnology in Agriculture and Forestry, Springer-Verlag, Berlin and New York (in press).

    Google Scholar 

  3. Manders G, Davey MR, Power JB (1992) New Genes for Old Trees. J Exp Bot 43: 1181–1190.

    Article  CAS  Google Scholar 

  4. van Wordragen MF, Dons HJM (1992) Agrobacterium tumefaciens-medidted transformation of recalcitrant crops. Plant Mol Biol Rep 10: 12–36.

    Article  Google Scholar 

  5. Huang Y, Diner AM, Karnosky DF (1991) Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua In Vitro Cell Dev Biol 27 P: 201–207.

    Google Scholar 

  6. Karnosky DF, Podila GK, Tsai CJ, Chiang VL, Shin D-I (1994). Progress in production of transgenic trees with value-added genes: Results with larch and aspen. In: Biological Sciences Symposium, pp 157–160, Tappi Press, Minneapolis, Minnesota.

    Google Scholar 

  7. Clapham DH, Ekberg I (1986) Induction of tumours by various strains of Agrobacterium tumefaciens on Abies nordmanniana and Picea abies Scand J For Res 1: 435–437.

    Article  Google Scholar 

  8. Morris JW, Castle LA, Morris RO (1989) Efficacy of different Agrobacterium tumefaciens strains in transformation of pinaceous gymnosperms. Physiol Mol Plant Pathol 34: 451–461.

    Article  Google Scholar 

  9. Diner AM, Karnosky DF (1987) Differential responses of two conifers to in vitro inoculation with Agrobacterium rhizogenes Eur J For Path 17: 211–216.

    Article  Google Scholar 

  10. Karnosky DF, Diner AM, Barnes WM (1988) A model system for gene transfer in conifers: european larch and Agrobacterium In: Somatic cell genetics of woody plants, Ahuja MR (Ed.), pp 55–63, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  11. McAfee BJ, White EE, Pelcher LE, Lapp MS (1993) Root induction in pine (Pinus) and larch (Larix) spp. using Agrobacterium rhizogenes Plant Cell Tiss Org Cult 34: 53–62.

    Article  Google Scholar 

  12. Stomp A-M, Loopstra CA, Chilton WS, Sederoff RR, Moore LW (1990) Extended host range of Agrobacterium tumefaciens in the genus Pinus Plant Physiol 92: 1226–1232.

    Article  PubMed  CAS  Google Scholar 

  13. Ellis DD, Roberts D, Sutton B, Lazaroff W, Webb D, Flinn B (1989) Transformation of white spruce and other conifer species by Agrobacterium tumefaciens Plant Cell Rep 8: 16–20.

    Article  CAS  Google Scholar 

  14. Clapham D, Ekberg I, Eriksson G, Hood EE, Norell L (1990) Within-population variation in susceptibility to Agrobacterium tumefaciens A281 in Picea abies (L.) Karst. Theor Appl Genet 79: 654–656.

    Article  Google Scholar 

  15. Hood EE, Clapham DH, Ekberg I, Johannson T (1990) T-DNA presence and opine production in turmors of Picea abies (L.) Karst induced by Agrobacterium tumafaciens A281. Plant Mol Biol 14: 111–117.

    Article  PubMed  CAS  Google Scholar 

  16. Magnussen D, Clapham D, Grönroos R, von Arnold S (1994) Induction of hairy and normal roots on Picea abies, Pinus sylvestris and Pinus cortorta by Agrobacterium rhizogenes Scand J For Res 9: 46–51.

    Article  Google Scholar 

  17. Sederoff R, Stomp A-M, Chilton WS, Moore LW (1986) Gene transfer into loblolly pine by Agrobacterium tumefaciens Bio/Technol 4: 647–650.

    Article  CAS  Google Scholar 

  18. Gupta PK, Dandekar AM, Durzan DJ (1988) Somatic proembryo formation and transient expression of a luciferase gene in Douglas-fir and loblolly pine protoplasts. Plant Sci 58: 85–92.

    Article  CAS  Google Scholar 

  19. Loopstra CA, Stomp A-M, Sederoff RR (1990) Agrobacterium-mediated DNA transfer in sugar pine. Plant Mol Biol 15: 1–9.

    Article  PubMed  CAS  Google Scholar 

  20. Bergmann BA, Stomp A-M (1992) Effect of host plant genotype and growth rate on Agrobacterium tumefaciens-mediated gall formation in Pinus radiata Phytopathol 82: 1457–1462.

    Article  Google Scholar 

  21. Dandekar AM, Gupta PK, Durzan DJ, Knauf V (1987) Transformation and foreign gene expression in micropropagated Douglas-fir (Pseudotsuga menziesii). Bio/Technol 5: 587–590.

    Article  CAS  Google Scholar 

  22. Morris JW, Morris RO (1990) Identification of an Agrobacterium tumefaciens virulence gene inducer from the pinaceous gymnosperm Pseudotsuga menziesii Proc Nat Acad Sci USA 87: 3614–3618.

    Article  PubMed  CAS  Google Scholar 

  23. Han KH, Fleming P, Walker K, Loper M, Chilton WS, Mocek U, Gordon MP, Floss HG (1994) Genetic transformation of mature Taxus — an approach to genetically control the in vitro production of the anticancer drug, taxol. Plant Sci 95: 187–196.

    Article  CAS  Google Scholar 

  24. Ellis DD, McCabe DE, Mclnnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Bio/Technol 11: 84–89.

    Article  CAS  Google Scholar 

  25. Charest PJ, Lachance D, Devantier Y, Klimaszewska KK (1994) Transient gene expression and stable genetic transformation in Picea mañana (black spruce) and Larix laricina (tamarack). Rev Invest Agraria: Serie Syst Rec For 4: 187–192.

    Google Scholar 

  26. Charest PJ, Calero N, Lachance D, Mitsumune M, Yoo BY (1993) The use of microprojetile DNA delivery to bypass the long life cycle of tree species in gene expression studies. In: Current topics in Botanical Research vol. 1, Menon J (Ed.), Council of Scientific Research Integration, pp 151–163, India.

    Google Scholar 

  27. Charest PJ, Devantier Y, Ward C, Schaffer U, Klimaszewska KK (1991) Transient expression of foreign chimeric genes in the gymnosperm hybrid larch following electroporation. Can J Bot 69: 1731–1736.

    Article  Google Scholar 

  28. Duchesne LC and Charest PJ (1992) Effect of promoter sequence on transient expression of the ß-glucuronidase gene in embryogenic calli of Larix x eurolepsis and Picea mariana following microprojection. Can J Bot 70: 175–180.

    Article  CAS  Google Scholar 

  29. Duchesne LC, Lelu MA, von Aderkas P, Charest PJ (1993) Microprojectile-mediated DNA delivery in haploid and diploid embryogénie cells of Larix spp. Can J For Res 23: 312–316.

    Article  CAS  Google Scholar 

  30. Bekkaoui F, Pilon M, Laine E, Raju DSS, Crosby WL, Dunstan DI (1988) Transient gene expression in electroporated Picea glauca protoplasts. Plant Cell Rep 7: 481–484.

    Article  CAS  Google Scholar 

  31. Bekkaoui F, Datla RSS, Pilon M, Tautorus TE, Crosby WL, Dunstan DI (1990) The effects of promoter on transient expression in conifer cell lines. Theor Appl Genet 79: 353–359.

    Article  CAS  Google Scholar 

  32. Tautorus TE, Bekkaoui F, Pilon M, Datla RSS, Crosby WL, Fowke LC, Dunstan DI (1989) Factors affecting transient gene expression in electroporated black spruce (Picea mariana) and jack pine (Pinus banksiand) protoplasts. Theor Appl Genet 78: 531–536.

    Article  Google Scholar 

  33. Wilson SM, Thorpe TA, Moloney MM (1989) PEG-mediated expression of GUS and CAT genes in protoplasts from embryogénie suspension cultures of Picea glauca Plant Cell Rep 7: 704–707.

    CAS  Google Scholar 

  34. Charest PJ, Lachance D, Jones C, Devantier Y (1993) Microprojectile and silicon carbide mediated DNA delivery in conifers and recovery of transgenic black spruce. In Vitro Cell Devel Biol 29 A: 87.

    Google Scholar 

  35. Duchesne LC, Charest PJ (1991) Transient expression of the β-Glucuronidase gene in embryogénie callus of Picea mariana following microprojection. Plant Cell Rep 10: 191–194.

    Article  CAS  Google Scholar 

  36. Ellis DD, McCabe D, Rüssel D, Martinell B, McCown BH (1991) Expression of inducible angiosperm promoters in a gymnosperm, Picea glauca (white spruce). Plant Mol Biol 17: 19–27.

    Article  PubMed  CAS  Google Scholar 

  37. Newton RJ, Yibrah HS, Dong N, Clapham DH, von Arnold S (1992) Expression of an abscisic acid responsive promoter in Picea abies (L.) Karst, following bombardment from an electric discharge particle accelerator. Plant Cell Rep 11: 188–191.

    Article  CAS  Google Scholar 

  38. Charest PJ, Calero N, Lachance D, Datla RSS, Duchesne LC, Tsang EWT (1993) Microprojectile-DNA delivery in conifer species — factors affecting assessment of transient gene expression using the β-Glucuronidase reporter gene. Plant Cell Rep 12: 189–193.

    Article  CAS  Google Scholar 

  39. Bommineni VR, Datla RSS, Tsang EWT (1994) Expression of gus in somatic embryo cultures of black spruce after microprojectile bombardment. J Exp Bot 45: 491–495.

    Article  Google Scholar 

  40. Li Y-h, Tremblay FM, Séguin A (1994) Transient transformation of pollen and embryogenic tissues of white spruce (Picea glauca (Moench.) Voss) resulting from microprojectile bombardment. Plant Cell Rep 13: 661–665.

    Article  CAS  Google Scholar 

  41. Robertson D, Weissinger AK, Ackley R, Glover S, Sederoff RR (1992) Genetic

    Google Scholar 

  42. transformation of norway spruce (Picea abies (L) Karst) using somatic embryo explants by microprojectile bombardment. Plant Mol Biol 19: 925–935.

    Google Scholar 

  43. Bommineni VR, Chibbar RN, Datla RSS, Tsang EWT (1993) Transformation of white spruce (Picea glauca) somatic embryos by microprojectile bombardment. Plant Cell Rep 13: 17–23.

    Article  CAS  Google Scholar 

  44. Campbell MA, Kinlaw CS, Neale DB (1992) Expression of luciferase and ß-glucuronidase in Pinus radiata suspension cells using electroporation and particle bombardment. Can J For Res 22: 2014–2018.

    Article  CAS  Google Scholar 

  45. Stomp A-M, Weissinger A, Sederoff RR (1991) Transient expression from microprojectile-mediated DNA transfer in Pinus taeda Plant Cell Rep 10: 187–190.

    Article  Google Scholar 

  46. Loopstra CA, Weissinger AK, Sederoff RR (1992) Transient gene expression in differentiating pine wood using microprojectile bombardment. Can J For Res 22: 993–996.

    Article  CAS  Google Scholar 

  47. Walter C, Smith DR, Connett MB, Grace L, White DWR (1994) A biolistic approach for the transfer and expression of a gush reporter gene in embryogenic cultures of Pinus radiata Plant Cell Rep 14: 69–74.

    Article  CAS  Google Scholar 

  48. Goldfarb B, Strauss SH, Howe GT, Zaerr JB (1991) Transient gene expression of microprojectile-introduced DNA in Douglas-fir cotyledons. Plant Cell Rep 10: 517–521.

    CAS  Google Scholar 

  49. Tautorus TE, Fowke LC, Dunstan DI (1991) Somatic embryogenesis in conifers. Can J Bot 69: 1873–1899.

    Article  Google Scholar 

  50. Lelu MA, Klimaszewska KK, Jones C, Ward C, von Aderkas P, Charest PJ (1993). A laboratory guide to somatic embryogenesis in spruce and larch. No. PI-X-111. Petawawa National Forestry Institute.

    Google Scholar 

  51. Allen GC, Hall GE, Childs LC, Weissinger AK, Spiker S, Thompson WF (1993) Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell 5: 603–613.

    Article  PubMed  CAS  Google Scholar 

  52. Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WRJ, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618.

    Article  PubMed  CAS  Google Scholar 

  53. Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P (1988) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci USA 85: 8502–8505.

    Article  PubMed  CAS  Google Scholar 

  54. Twell D, Klein TM, Fromm ME, McCormick S (1989) Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol 91: 1270–1274.

    Article  PubMed  CAS  Google Scholar 

  55. Nishihara M, Ito M, Tanaka I, Kyo M, Ono K, Irifune K, Morikawa H (1993) Expression of the β-glucuronidase gene in pollen of lily (Lilium longiflorum), tobacco (Nicotiana tabacum), Nicotiana rustica, and peony (Paeonia lactiflora) by particle bombardment. Plant Physiol 102: 357–361.

    PubMed  CAS  Google Scholar 

  56. van der Leede-Plegt LM, van de Ven BCE, Bino RJ, van der Salm TPM, van Tunen AJ (1992) Introduction and differential use of various promoters in pollen grains of Nicotiana glutinosa and Lilium longiflorum Plant Cell Rep 11: 20–24.

    Article  Google Scholar 

  57. Hamilton D, Roy M, Rueda J, Sindhu R, Sanford J, Mascarenhas J (1992) Dissection of a pollen-specific promoter from maize by transient transformation assays. Plant Mol Biol 18: 211–218.

    Article  PubMed  CAS  Google Scholar 

  58. Negrutiu I, Heberle-Bors E, Potrykus I (1986) Attempts to transform for kanamycin-resistance in mature pollen of tobacco. In: Mulcahy DL, Bergamini-Mulcahy G, Ottaviano E (Eds.) Biotechnology and Ecology of Pollen, pp 65–70, Springer-Verlag, New York.

    Chapter  Google Scholar 

  59. Twell D, Klein TM, McCormick S (1991) Transformation of pollen by particle bombardment. In: Lindsey K (Ed.) Plant Tissue Culture Manual, pp 1–14, Kluwer Academic, Dordrecht.

    Google Scholar 

  60. Hay I, Lachance D, von Aderkas P, Charest PJ (1994) Transient chimeric gene expression in pollen of five conifer species following microparticle bombardment. Can J For Res 24: 2417–2423.

    Article  Google Scholar 

  61. Cheliak WM, Klimaszewska KK (1991) Genetic variation in somatic embryogenesis response in open-pollinated families of black spruce. Theor Appl Genet 82: 185–190.

    Article  Google Scholar 

  62. Thorpe TA, Harry IS (1991) Clonal propagation of conifers. In: Lindsey K (Ed.) Plant Tissue Culture Manual, C3: pp 1–16, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  63. Russell JA, Roy MK, Sanford JC (1992) Major improvements in biolistic transformation of suspension-cultured tobacco cells. In Vitro Cell Dev Biol-Plant 28 P: 97–105.

    Google Scholar 

  64. Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12: 84–88.

    Article  Google Scholar 

  65. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant Plasmid DNA. Nucleic Acids Res 7: 1513–1517.

    Article  PubMed  CAS  Google Scholar 

  66. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Harbor, NY: Cold Spring Habor Laboratory.

    Google Scholar 

  67. Kikkert JR (1993) The Biolistic PDS-1000/He device. Plant Cell Tissue Organ Cult 33: 221–226.

    Article  CAS  Google Scholar 

  68. Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep 5: 387–405.

    Article  CAS  Google Scholar 

  69. Howell SH, Ow DW, Schneider M (1989) Use of the firefly luciferase gene as a reporter of gene expression in plants. In: Gelvin SB, Schilperoort RA (Eds.) Plant Molecular Biology Manual, pp 1–11, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  70. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  71. Kosugi S, Ohashi Y, Nakajima K, Arai Y (1990) An improved assay for β-glucuronidase in transformed cells: methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Science 70: 133–140.

    Article  CAS  Google Scholar 

  72. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    Article  PubMed  CAS  Google Scholar 

  73. Charest PJ, Bonga J, Klimaszewska K (1996) Cryopreservation of plant tissue cultures: the example of embryogenic tissues from conifers. In: Plant Tissue Culture Manual, Lindsey K (Ed.), C9: pp 1–27 Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  74. Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50: 859–865.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Séguin, A., Lachance, D., Charest, P.J. (1996). Transient gene expression and stable genetic transformation into conifer tissues by microprojectile bombardment. In: Lindsey, K. (eds) Plant Tissue Culture Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0181-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0181-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3874-1

  • Online ISBN: 978-94-009-0181-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics