Advertisement

Geometry of geodesic tubes on Sasakian manifolds

  • Mirjana Djorić
Part of the Mathematics and Its Applications book series (MAIA, volume 350)

Abstract

We give a brief survey about some aspects of the geometry of tubes about ϕ-geodesics on Sasakian manifolds. Considering the shape operator and the Ricci operator of these tubes, we characterize Sasakian space forms and locally ϕ -symmetric spaces.

Keywords

Vector Field Levi Civita Connection Shape Operator Tubular Neighborhood Contact Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.E. Blair: Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin-Heidelberg-New York, 1976.zbMATHGoogle Scholar
  2. 2.
    D.E. Blair and B.J. Papantoniou: A characterization of Sasakian space forms by geodesic tubes, Math. J. Toyama Univ. 16 (1993), 65–90.MathSciNetzbMATHGoogle Scholar
  3. 3.
    D.E. Blair and L. Vanhecke: Geodesic spheres and Jacobi vector fields in Sasakian space forms, Proc. Roy. Soc. Edinburgh Sect. A105 (1987), 17–22.MathSciNetCrossRefGoogle Scholar
  4. 4.
    D.E. Blair and L. Vanhecke: Symmetries and (ϕ symmetric spaces, Tôhoku Math. J. 39 (1987), 373–383.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    D.E. Blair and L. Vanhecke: New characterizations of ϕ -symmetric spaces, Kodai Math. J. 10 (1987), 102–107.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    P. Bueken: Reflections and rotations in contact geometry, doctoral dissertation, Katholieke Universiteit Leuven, 1992.Google Scholar
  7. 7.
    P. Bueken and L. Vanhecke: Geometry and symmetry on Sasakian manifolds, Tsukuba Math. J. 12 (1988), 403–422.MathSciNetzbMATHGoogle Scholar
  8. 8.
    B.Y. Chen and L. Vanhecke: Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28–67.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    M. Djorić and L. Vanhecke: Almost Hermitian geometry, geodesic spheres and symmetries, Math. Okayama Univ. 32 (1990), 187–206.zbMATHGoogle Scholar
  10. 10.
    M. Djorić and L. Vanhecke: Geometry of geodesic spheres on Sasakian manifolds, Rend. Sem. Mat. Univ. Pol. Torino 49 (1991), 329–357.zbMATHGoogle Scholar
  11. 11.
    M. Djorić and L. Vanhecke: Geometry of tubes about characteristic curves on Sasakian manifolds, Rend. Circ. Mat. Palermo XLI (1992), 111–122.CrossRefGoogle Scholar
  12. 12.
    M. Djorić: Geometry of tubes about (ϕ-geodesies on Sasakian manifolds, submitted.Google Scholar
  13. 13.
    M. Djorić: On characterizations of Sasakian space forms and locally (ϕ-symmetric spaces by ϕ-geodesic tubes, to appear in Publ. Mat. Debrecen 46 (1995), 1–23.Google Scholar
  14. 14.
    M. Djorić: Characterizations of Kählerian space forms and locally Hermitian symmetric spaces by geodesic tubes, in preparation.Google Scholar
  15. 15.
    L. Gheysens and L. Vanhecke: Total scalar curvature of tubes about curves, Math. Nachr. 103 (1981), 177–197.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    A. Gray and L. Vanhecke: Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157–198.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    A. Gray and L. Vanhecke: The volume of tubes about curves in a Riemannian manifold, Proc. London Math. Soc. 44 (1982), 215–243.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    A. Gray: Tubes, Addison-Wesley Publ. Co., Reading, (1990).zbMATHGoogle Scholar
  19. 19.
    S. Kobayashi and K. Nomizu: Foundations of Differential geometry, I, II, Inter-science, New York, 1963, 1969.zbMATHGoogle Scholar
  20. 20.
    K. Ogiue: On fiberings of almost contact manifolds, Kōdai Math. Sem. Rep. 17 (1965), 53–62.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    M. Okumura: Some remarks on spaces with a certain contact structure, Tôhoku Math. J. 14 (1962), 135–145.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    S. Sekigawa and L. Vanhecke: Symplectic geodesic symmetries on Kähler manifolds, Quart. J. Math. Oxford 37 (1986), 95–103.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    T. Takahashi: Sasakian (ϕ-symmetric spaces, Tôhoku Math. J. 29 (1977), 91–113.zbMATHCrossRefGoogle Scholar
  24. 24.
    S. Tanno: Constancy of holomorphic sectional curvature in almost Hermitian manifolds, Kōdai Math. Sem. Rep. 25 (1973), 190–201.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    L. Vanhecke: Geometry in normal and tubular neighborhoods, Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al Vol.58 (1988), 73–176.MathSciNetGoogle Scholar
  26. 26.
    K. Yano and M. Kon: Structures on manifolds, Series in Pure Mathematics, 3, World Scientific Publ. Co., Singapore, 1984.zbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Mirjana Djorić
    • 1
  1. 1.Faculty of MathematicsUniversity of BelgradeBelgradeYugoslavia

Personalised recommendations