Special vector fields on a compact Riemannian manifold

  • Grigorios Tsagas
Part of the Mathematics and Its Applications book series (MAIA, volume 350)


The aim of the present paper is to prove that there exists no Killing vector field on a compact Riemannian manifold (M,g) with the property p(x) = 0 "; € M C {x 0} and p(x 0) < 0. This is an improvement of Yano’s result. It is also proved that dim K 1 (M, R) is not a topological invariant.

Keywords and phrases

Killing vector field compact manifold Riemannian manifold Ricci tensor field homotopy groups homology groups cohomology groups 

1991 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. H. Berard: Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics 1207 Springer - Verlag. Berlin 1986.Google Scholar
  2. 2.
    M. Berger: Sur queleques varietes. Riemanniennes suffisament pincées, Bui.Soc. Math. France 88 (1960), pp. 57–71.zbMATHGoogle Scholar
  3. 3.
    A. Brooks: A construction of metrics of negative Ricci curvature, J. Diff. Geom. 29 (1989) pp. 288–291.MathSciNetGoogle Scholar
  4. 4.
    A. Lichnerowicz: Theorie globale de connexions et des groups d’ holonomie, Cremonese, Rome, 1955.Google Scholar
  5. 5.
    A. Lichnerowicz: Géométrie des groups de transformations, Dunod, Paris 1985.Google Scholar
  6. 6.
    J. Lohcomp: Negatively Ricci curved manifold, Bulletin of A.M.S. Vol 22. (1969) pp. 476–478.Google Scholar
  7. 7.
    S. B. Myers: Connection between differential geometry and topology, Duke Math. J. 1 (1933) pp. 376–391.CrossRefGoogle Scholar
  8. 8.
    G. R. Tsagas: A relation between Killing tensor fields and negative pinched Riemannian manifolds, Proc. A.M.S. Vol 22. (1969) pp. 476–478.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    G. R. Tsagas: Some properties of negative pinched Riemannian manifolds of dimension 5 and 7, Jour Diff. Geom. 3 (1969) pp. 523–530.MathSciNetzbMATHGoogle Scholar
  10. 10.
    K. Yano and S. Bochner: Curvature and Betti numbers, Princeton Univ. Press 1953 Princeton.zbMATHGoogle Scholar
  11. 11.
    K. Yano: On harmonic find Killing vector fields, Ann Math. 55 (1952) pp. 38–45.zbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Grigorios Tsagas
    • 1
  1. 1.Division of Mathematics Deparment of Mathematics and PhysicsAristotle University of ThessalonikiThessaloknikiGreece

Personalised recommendations