Noether type theorems in higher order analytical mechanics

  • R. Miron
Part of the Mathematics and Its Applications book series (MAIA, volume 350)


This paper is a summary of our lecture on higher order Lagrange Geometry, given at the Colloquium on Differential Geometry, July 25-30,1994, Debrecen, Hungary.


Solution Curve Generalize High Order High Order Differential Equation Extremal Curf Extended Affine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Crampin, W. Sarlet and F. Cantrijn: Higher order differential equations and higher order lagrangian mechanics, Math. Proc. Camb. Phil. Soc. 99 (1986), 565–587.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    R.D. Grigore: A generalized lagrangian formalism in particle mechanics and classical field theory, Fortschritte der Physik 41 no. 7 (1993), 569–671.MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. de Leon and P. Rodrigues: Generalised classical mechanics and field theory, North-Holland, 1985.Google Scholar
  4. 4.
    A. Kawaguchi: On the vectors of higher order and the extended affine connections, Ann. di Matem. Pura ed Appl (IV) 55 (1961), 105–118.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    D. Krupka: Lagrangian forms in higher order variational theory, Atti del I a Acad, delle Sci. di Torino, suppl. 117 (1983), 197–238.MathSciNetGoogle Scholar
  6. 6.
    K. Kondo: Epistemological foundations of quasi-microscopic phenomena from the standpoint of Finsler’s and Kawaguchi’s higher order geometry, it Post RAAG Reports 241, 242, 243,(1991)Google Scholar
  7. 7.
    R. Miron and M. Anastasiei: The geometry of Lagrange spaces: Theory and applications, Kluwer Acad. Publ. FTPH 59, 1994Google Scholar
  8. 8.
    R. Miron and GH. Atanasiu: Lagrange geometry of second order, Math, cornput. Modelling 20, 4 (1994), 41–56.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    R. Miron and GH. Atanasiu: Geometrical theory of gravitational and electromagnetic field in higher order Lagrange spaces Tsukuba Jour. of Math, (to appear)Google Scholar
  10. 10.
    W. Sarlet, F. Cantrijm and M. Crampin: Pseudo-symmetries, Noethers theorem and adjoint equation, J. Phys. A: Math. Geom. 20 (1987), 1365–1376.zbMATHCrossRefGoogle Scholar
  11. 11.
    D.J. Saunders: The geometry of jet bundles, Cambridge Univ. Press, 1989Google Scholar
  12. 12.
    J.L. Synge: Relativity. General Theory, North-Holland, Amsterdam, 1966Google Scholar
  13. 13.
    J.L. Synge: Some intrinsic and derived vectors in a Kawaguchi space, Amer. Jour, of Math. LVII (1935), 679–692.MathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • R. Miron
    • 1
  1. 1.Facul. MatematicaUniv. “Al. I. Cuza“ IasiIasiRomania

Personalised recommendations