Advertisement

A geometrical approach to Classical Field Theories: a constraint algorithm for singular theories

  • Manuel de León
  • Jesús Marin-Solano
  • Juan C. Marrero
Part of the Mathematics and Its Applications book series (MAIA, volume 350)

Abstract

We construct a geometrical formulation for first order classical field theories in terms of fibered manifolds and connections. Using this formulation, a constraint algorithm for singular field theories is developed. This algorithm extends the constraint algorithm in mechanics.

Mathematics Subject Classification

70G50 53C80 58A20 53C15 

PACS 1992

03.20.+i 02.40.+m 

Keywords

First order field theory Lagrangian formalism multisymplectic formalism singular field theories constraints fibered manifolds jet manifolds Ehresmann connections 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Awane: k-symplecticstructures, J. Math. Phys. 33 (12) (1992), 4046–4052.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    E. Binz, J. Śniatycki, H. Fisher: Geometry of Classical Fields, North-Holland Math. Studies, 154, Amsterdam, 1989.Google Scholar
  3. 3.
    F. Cantrijn, M. Crampin, J. F. Cariñena, L. A. Ibort: Reduction of degenerate Lagrangians, J. Geom. Phys. 3 (1986), 353–400.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    J. F. Cariñena, M. Crampin, L. A. Ibort: On the multisymplectic formalism for first order field theories, Diff. Geom. Appl. 1 (1991), 345–374.zbMATHCrossRefGoogle Scholar
  5. 5.
    D. Chinea, M. de León, J. C. Marrero: The constraint algorithm for degenerate nonautonomous Lagrangian systems, Proceedings Workshop Recent Topics in Differential Geometry, Puerto de la Cruz (Tenerife, Spain), Publ. Univ. La Laguna, Serie Informes, 32 (1991), 13-29.Google Scholar
  6. 6.
    D. Chinea, M. de León, J. C. Marrero: The constraint algorithm for time-dependent Lagrangians, J. Math. Phys. 35 (7), (1994), 3410–3447.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    P. Dedecker: On the generalization of symplectic geometry to multiple integrals in the calculus of variations, Lect. Notes in Math., 570 (1977), 395–456.MathSciNetCrossRefGoogle Scholar
  8. 8.
    P. A. M. Dirac: Generalized Hamiltonian Dynamics, Canadian J. Math., 2 (1950), 129–148.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    A. Echevarría-Enífquez, M. C. Muñoz-Lecanda, N. Román-Roy: Geometry of Lagrangian First-order Classical Field Theories, Preprint, July 1994.Google Scholar
  10. 10.
    J. Fernández-Nuñez: Teoría de Jets y Geometría de Sistemas Lagrangianos singulares dependientes del tiempo, Tesis Doctoral, Departamento de Física, Universidad de Oviedo, 1991.Google Scholar
  11. 11.
    P. L. García, A. Pérez-Rendón: Symplectic approach to the theory of quantized fields. I, Comm. Math. Phys. 13 (1969), 24–44.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    P. L. García, A. Pérez-Rendón: Symplectic approach to the theory of quantized fields. II, Archive Rat. Mech. Anal. 43 (1971), 101–124.zbMATHCrossRefGoogle Scholar
  13. 13.
    H. Goldschmidt, S. Sternberg: The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier (Grenoble), 23 (1975), 203–267.MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. J. Gotay: Presymplectic Manifolds, Geometric Constraint Theory and the Dirac-Bergmann Theory of Constraints, Dissertation, Center for Theoretical Physics, University of Maryland, 1979.Google Scholar
  15. 15.
    M. J. Gotay, J. M. Nester: Presymplectic Lagrangian systems I: the constraint algorithm and the equivalence theorem, Ann. Inst. H. Poincaré, A 30 (1979), 129–142.MathSciNetzbMATHGoogle Scholar
  16. 16.
    M. J. Gotay, J. M. Nester: Presymplectic Lagrangian systems II: the second-order differential equation problem, Ann. Inst. H. Poincaré, A 32 (1980), 1–13.MathSciNetzbMATHGoogle Scholar
  17. 17.
    M. J. Gotay: An Exterior Differential Systems Approach to the Cartan Form, Symplectic geometry and mathematical physics, Progr. Math., 99, Birkhauser, Boston, 1991, pp. 160–188.Google Scholar
  18. 18.
    M. J. Gotay: A multisymplectic framework for classical field theory and the calculus of variations I: Covariant Hamiltonian formalism, Mechanics, analysis and geometry: 200 years after Lagrange, North-Holland Delta Ser., North-Holland, Amsterdam, 1991, pp. 203–235.Google Scholar
  19. 19.
    M. J. Gotay, J. Isenberg, J. E. Marsden, R. Montgomery, J. Śniatycki, Ph. B. Yasskin: Momentum maps and classical relativistic fields: The Lagrangian and Hamiltonian structure of classical field theories with constraints, Preprint, 1989.Google Scholar
  20. 20.
    Ch. Günther: The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case, J. Differential Geometry, 25 (1987), 23–53.zbMATHGoogle Scholar
  21. 21.
    L. A. Ibort, J. Marin-Solano: A geometric classification of Lagrangian functions and the reduction of evolution space, J. Phys. A: Mat. Gen. 25 (1992), 3353–3367.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    I. Kolář: Affine differential operators and the Hamiltonian formalism, KniZnice Odborn. Ved. Spisu Vysoke Uceni Tech. v Brne, B-56 (1975), 17-21.Google Scholar
  23. 23.
    I. Kolář: On the Hamilton formalism in fibered manifolds, Symposium on Relativity and Gravitation, Scripta Fac. Sci. Natur. UJEP, Brunensis, Phys 5, no. 3-4, (1975), 249-253.Google Scholar
  24. 24.
    J. Kijowski: A finite-dimensional canonical formalism in the classical field theory, Comm. Math. Phys. 30 (1973), 99–128.MathSciNetCrossRefGoogle Scholar
  25. 25.
    J. Kijowski, W. Szczyrba: Multisymplectic manifolds and the geometric construction of the Poisson bracket in field theory, in Gémétrie Symplectique et Physique Mathématique, CNRS, Paris, 1975, pp. 347-378.Google Scholar
  26. 26.
    J. Kijowski, W. M. Tulczyjew: A Symplectic Framework for Field Theories, Lect. Notes in Physics, 107, Springer-Verlag, Berlin, 1979.zbMATHCrossRefGoogle Scholar
  27. 27.
    M. de León, J. Marin-Solano, J. C. Marrero: The constraint algorithm in the jet formalism, Preprint IMAFF-CSIC, Madrid, 1993.Google Scholar
  28. 28.
    M. de León, J. C. Marrero: Constrained time-dependent Lagrangian systems and Lagrangian submanifolds, J. Math. Phys. 34 (2) (1993), 622–644.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    M. de León, J. C. Marrero: Time-dependent linear Lagrangians and the inverse problem for second-order differential equations, International Symposium on Hamiltonian Systems and Celestial Mechanics, Guanajuato (Mexico), September 30-0ctober 4, 1991, Advanced Series in Nonlinear Dynamics, vol. 4, World Scientific Publishing Co., Singapore, 1993, 55-83.Google Scholar
  30. 30.
    M. de León, M. H. Mello, P. R. Rodrigues: Reduction of degenerate non-autonomous Lagrangian systems, Mathematical Aspects of Classical Field Theory, Seatle, Washington (USA), July 21-25, 1991. Ed. by Mark J. Gotay, Jerrold E. Marsden and Vincent Moncrief, Contemporary Mathematics, 132, 1992, 275-305.Google Scholar
  31. 31.
    M. de León, I. Méndez, M. Salgado: p-Almost tangent structures, Rend. Circolo Mat. Palermo, Ser. II, t. XXXVII (1988), 282–294.CrossRefGoogle Scholar
  32. 32.
    M. de León, I. Méndez, M. Salgado: Regular p - almost cotangent structures, J. Korean Math. Soc. 25, 2 (1988), 273–287.MathSciNetzbMATHGoogle Scholar
  33. 33.
    M. de León, E. Merino, M. Salgado: k-symplectic and cosymplectic reductions of field theories, work in progress.Google Scholar
  34. 34.
    M. de León, P. R. Rodrigues: Generalized Classical Mechanics and Field Theory, North-Holland Math. Studies, 112, Amsterdam, 1985.zbMATHGoogle Scholar
  35. 35.
    M. de León, P. R. Rodrigues: A contribution to the global formulation of the higher order Poincaré-Cartan form, Letters in Mathematical Physics, 14, 4 (1987) 353–362.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    M. de León, P. R. Rodrigues: Comments on the canonical formalism on timedependent higher order Lagrangians, Revista Colombiana de Matematicas, vol. XXI (1987) 47–64.Google Scholar
  37. 37.
    M. de León, P. R. Rodrigues: Hamiltonian structures and Lagrangian field theories on jet bundles, Bol. Acad. Galega de Ciencias, VII (1988), 69–81.Google Scholar
  38. 38.
    M. de León, P. R. Rodrigues: nk -Almost Tangent Structures and the Hamiltonization of Higher Order Field Theories, J. Math. Phys., 30 (6) (1989), 1351–1353.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    M. de León, P. R. Rodrigues: Methods of Differential Geometry in Analytical Mechanics, North-Holland Math. Studies 152, Amsterdam, 1989.zbMATHGoogle Scholar
  40. 40.
    P. Libermann: Parallélismes, J. Differential Geometry, 8 (1973), 511–539.MathSciNetzbMATHGoogle Scholar
  41. 41.
    P. Libermann, Ch. Marie: Symplectic Geometry and Analytical Mechanics, Reidel, Dordrecht, 1987.zbMATHCrossRefGoogle Scholar
  42. 42.
    C. López: Estudiogeometricodesistemas con ligaduras, Tesis Doctoral, Departamento de Ffsica Teórica, Universidad de Zaragoza, 1989.Google Scholar
  43. 43.
    G. Martin: Dynamical structures for k-vector fields, Int. J. Theor. Phys. 27, 5 (1988), 571–585.zbMATHCrossRefGoogle Scholar
  44. 44.
    G. Martin: A Darboux theorem for multi-symplecticmanifolds, Letters in Math. Phys. 16 (1988), 133–138.zbMATHCrossRefGoogle Scholar
  45. 45.
    L. K. Norris: Generalized symplectic geometry on the frame bundle of a manifold, Proc. Symposia in Pure Math., 54, Part 2 (1993), 435–465.MathSciNetGoogle Scholar
  46. 46.
    M. Puta: Some remarks on the k-symplectic manifolds, Tensor N. S. 47 (2) (1988), 109–115.MathSciNetzbMATHGoogle Scholar
  47. 47.
    A. Roux: Jet et connexions, Publ. Dep. de Mathématiques, Lyon, 1975.Google Scholar
  48. 48.
    G. Sardanashvily, O. A. Zakharov: On applications of the Hamiltonian formalism in fibered manifolds to field theory, Diff. Geom. Appl. 3 (1993), 245–263.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    G. Sardanashvily: Gauge Theory in Jet Manifolds, Monographs in Applied Mathematics, Hadronic Press, Inc, Palm Harbor, 1993.Google Scholar
  50. 50.
    D. J. Saunders: An alternative approach to the Cart an form in Lagrangian field theories, J. Phys. A: Math. Gen. 20 (1987), 339–349.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    D. J. Saunders: Jet fields, connections and second-order differential equations, J. Phys. A: Math. Gen. 20 (1987), 3261–3270.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    D. J. Saunders: The geometry of jet bundles, London Math. Soc. Lecture Notes Series, 142, Cambridge Univ. Press, Cambridge, 1989.zbMATHCrossRefGoogle Scholar
  53. 53.
    D. J. Saunders, M. Crampin: On the Legendre map in higher-order field theories, J. Phys. A: Math. Gen. 23 (1990), 3169–3182.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    J. Śniatycki: On the geometric structure of classical field theory in Lagrangian formulation, Proc. Camb. Phil. Soc. 68 (1970), 475–483.zbMATHCrossRefGoogle Scholar
  55. 55.
    K. Sundermeyer: Constrained Dynamics, Lect. Notes in Phys. 169, Springer-Verlag, Berlin, 1982.zbMATHGoogle Scholar
  56. 56.
    O. A. Zakharov: Hamiltonian formalism for nonregular Lagrangian theories in fibered manifolds, J. Math. Phys. 33 (2) (1992), 607–611.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Manuel de León
    • 1
  • Jesús Marin-Solano
    • 2
  • Juan C. Marrero
    • 3
  1. 1.Consejo Superior de Inv. CientíficasInstituto de Matemáticas y Físical FundMadridSpain
  2. 2.Departament de Matemática EconòmicaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Departamento de Matemática Fundamental Facultad de MatemáticasUniversidad de La LagunaCanary IslandsSpain

Personalised recommendations