Higher-order constrained systems on fibered manifolds: An exterior differential systems approach

  • Olga Krupková
Part of the Mathematics and Its Applications book series (MAIA, volume 350)


Some recent results on higher-order Lagrangean systems are presented. The concept of higher-order Lagrangean system as a Lepagean two-form defined on a certain jet prolongation of a fibered manifold over a one-dimensional base is recalled. The dynamics then can be defined by a distribution (the Euler-Lagrange distribution) which generally is of non-constant rank. This approach leads to a natural geometric definition of regularity and a geometric classification of constrained systems. Since a Lagrangean system is understood as a class of equivalent Lagrangians (which can be of different orders), the theory, including a Hamilton formulation, is independent on the choice of a particular Lagrangian for the Lagrangean system under consideration. Relations to the symplectic, presymplectic, cosymplectic and precosymplectic geometry are discussed.


Lagrangean system Lepagean two-form Euler-Lagrange equations Hamilton equations time-dependent Lagrangian regularity singular Lagrangian constrained system the constrained algorithm. 

MS classification

58F05 70H05 70H35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd Ed., The Benjamin/Cummings Publ. Comp., Reading, 1978.zbMATHGoogle Scholar
  2. 2.
    D. Chinea, M. de León and J. C. Marrero, The constraint algorithm for time-dependent Lagrangians, J. Math. Phys. 35 (1994) 3410–3447.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    P. Dedecker, Le théorème de Helmholtz-Cartan pour une intégrale simple d’ordre supérieury C. R. Acad. Sci. Paris Sér. A 288 (1979) 827–830.MathSciNetzbMATHGoogle Scholar
  4. 4.
    P. A. M. Dirac, Generalized Hamiltonian dynamics, Proc. Roy Soc. London A 246 (1958) 326–332.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier, Grenoble 23 (1973) 203–267.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems I: the constraint algorithm and the equivalence theorem, II: the second order equation problem, Ann. Inst. H. Poincare Sect. A 30 (1979) 129–142, 32 (1980) 1-13.MathSciNetzbMATHGoogle Scholar
  7. 7.
    D. Krupka, Some geometric aspects of variational problems in fibered manifolds, Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973) 1–65.Google Scholar
  8. 8.
    D. Krupka, Lepagean forms in higher order variational theory, in: Modern Developments in Analytical Mechanics I: Geometrical Dynamics, Proc. IUTAM-ISIMM Symposium, Torino, Italy 1982, S. Benenti, M. Francaviglia and A Lichnerowicz eds. (Accad. delle Scienze di Torino, Torino, 1983) 197-238.Google Scholar
  9. 9.
    D. Krupka, Geometry of Lagrangean structures 2, 3, Arch. Math. (Brno) 22 (1986), 211-228; Proc. 14th Winter School on Abstract Analysis, Jan. 1986, Srní (Czechoslovakia), Suppl. ai rend, del Circ. Mat. di Palermo 14 (1987) 178-224.Google Scholar
  10. 10.
    D. Krupka and J. Musilová, Hamilton extremals in higher order mechanics, Arch. Math. (Brno) 20 (1984) 21–30.MathSciNetGoogle Scholar
  11. 11.
    O. Krupková, Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity, II. Inverse problem, Arch. Math. (Brno) 22 (1986) 97–120, 23 (1987) 155-170.MathSciNetzbMATHGoogle Scholar
  12. 12.
    O. Krupková, Variational analysis on fibered manifolds over one-dimensional bases, PhD Thesis, Dept. of Math., Silesian University, Opava (Czechoslovakia), March 1992, 67 pp.Google Scholar
  13. 13.
    O. Krupková, A geometric setting for higher order Dirac-Bergmann theory of con straints, J. Math. Phys. 35 (1994) 6557–6576.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    M. de León, P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, North-Holland, Amsterdam, 1985.zbMATHGoogle Scholar
  15. 15.
    M. de Leon and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland, Amsterdam, 1989.zbMATHGoogle Scholar
  16. 16.
    P. Libermann and Ch.-M. Marle, Symplectic Geometry and Analytical Mechanics, Mathematics and Its Applications, D. Reidel, Dordrecht, 1987.Google Scholar
  17. 17.
    A. L. Vanderbauwhede, Potential operators and variational principles, Hadronic J. 2 (1979) 620–641.MathSciNetzbMATHGoogle Scholar
  18. 18.
    J. F. Cariñena, C. López and M. F. Rañada, Geometric Lagrangian approach to firstorder systems and applications, J. Math. Phys. 29 (1988) 1134–1142.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    X. Grácia, J. M. Pons and N. Román-Roy, Higher order lagrangian systems: Geometric structures dynamics and constraints, J. Math. Phys. 32 (1991) 2744–2763.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    M. de León and J. C. Marrero, Degenerate time-dependent Lagrangians of second order: the fourth order differential equation problem, in: Proc. of the 5th International Conference on Differential Geometry and Its Applications, August 1992, Opava (Czechoslovakia), O. Kowalski and D. Krupka, eds. (Silesian Univ. at Opava, Czech Republic, 1993), 497-508.Google Scholar
  21. 21.
    M. de León and J. C. Marrero, Constrained time-dependent Lagrangian systems and Lagrangian submanifolds, J. Math. Phys. 34 (1993) 622–644.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Olga Krupková
    • 1
  1. 1.Department of MathematicsSilesian University OpavaOpavaCzech Republic

Personalised recommendations