Advertisement

The eta invariant and the equivariant spin bordism of spherical space form 2 groups

  • Peter B. Gilkey
  • Boris Botvinnik
Part of the Mathematics and Its Applications book series (MAIA, volume 350)

Abstract

We use the eta invariant to compute the equivariant spin bordism groups Ω 5 spin (Z/2 µ ), Ω 3 spin (BQ), and Ω 7 spin (BQ)

MSC numbers

58G12 58G25 53A50 53C25 55N22. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry I, II, III, Math. Proc. Cambr. Phil. Soc. 77 (1975) 43–69, 78 (1975) 405–432, 79 (1976) 71–99.MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Bahri, M. Bendersky, D. Davis, and P. Gilkey, The complex bordism of groups with periodic cohomology, Trans. AMS V316 (1989), 673–687.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    B. Botvinnik, P. Gilkey, and S. Stoltz, The Gromov-Lawson-Rosenberg conjecture for groups with periodic cohomology (preprint).Google Scholar
  4. 4.
    D. Bayen and R. Bruner, The real connective K-homology of BG for groups G with Q 8 as Sylow 2-subgroup, to appear Transactions of the AMS.Google Scholar
  5. 5.
    P. Gilkey, The eta invariant and the K-theory of odd dimensional spherical space forms, Invent. Math. 76 (1984), 421–453.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    P. Gilkey, Invariance Theory, the heat equation, and the Atiyah-Singer index theorem 2 nd Ed CRC press (December 94).Google Scholar
  7. 7.
    P. Gilkey, The geometry of spherical space form groups, World Scientific Press (1980).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Peter B. Gilkey
    • 1
  • Boris Botvinnik
    • 1
  1. 1.Mathematics DepartmentUniversity of OregonEugeneUSA

Personalised recommendations