Four Dimensional Osserman Lorentzian Manifolds

  • Eduardo García-Río
  • Demir N. Kupeli
Part of the Mathematics and Its Applications book series (MAIA, volume 350)


A problem of Osserman related to the constancy of the eigenvalues of the Jacobi operator is studied in Lorentzian Geometry. It is proven that pointwise timelike Osserman Lorentzian manifolds are of constant curvature as well as those of pointwise spacelike Osserman Lorentzian spaces of dimension 3 and 4. It is shown that a 4-dimensional globally null Osserman Lorentzian manifold is either of constant curvature or is locally a Robertson-Walker spacetime.

Mathematics Subject Classification

53B30 53C50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Blazic, N. Bokan, P. Gilkey; A note on Osserman Lorentzian Manifolds, (to appear).Google Scholar
  2. 2.
    Q.S. Chi; A curvature characterization of certain locally rank-one symmetric spaces, J. Diff. Geom., 28 (1988), 187–202.MathSciNetzbMATHGoogle Scholar
  3. 3.
    M. Dajczer, K. Nomizu; On sectional curvature of indefinite metrics II, Math. Ann., 247 (1980), 279–282.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    M. Dajczer, K. Nomizu; On the boundedness of Ricci curvature of an indefinite metric, Bol. Soc. Brasil. Mat., 11 (1980), 25–30.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    E. García-Río, D. N. Kupeli; Null and Infinitesimal isotropy in semi-Riemannian geometry, J. Geom. Phys., 13 (1994), 207–222.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    E. García-Río, D.N. Kupeli, M.E. Vázquez-Abal; On a Problem of Osserman in Lorentzian Geometry, Diff. Geom. Appl., (to appear)Google Scholar
  7. 7.
    P. Gilkey, A. Swann, L. Vanhecke; Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quartl. J. Math. Oxford(to appear).Google Scholar
  8. 8.
    S. Harris; A Characterization of Robertson-Walker metrics by Null Sectional Curvature, Gen. Relat. Grav., 17 (1985), 493–498.zbMATHCrossRefGoogle Scholar
  9. 9.
    H. Karcher; Infinitesimale Charakterisierung von Friedmann-Universen, Arch. Math., 38 (1982), 58–64.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    L. Koch-sen; Infinitesimal null isotropy and Robertson-Walker metrics, J. Math. Phys., 26 (1985), 407–410.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    B. O’neill; Semi-Riemannian geometry with applications to Relativity, Academic Press, New York, 1983.zbMATHGoogle Scholar
  12. 12.
    R. Osserman; Curvature in the eighties, Amer. Math. Monthly 97 (1990), 731–756.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    J. A. Thorpe; Curvature and the Petrov canonical Forms, J. Math. Phys., 10 (1969), 1–7.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Eduardo García-Río
    • 1
  • Demir N. Kupeli
    • 2
  1. 1.Departamento de Análise Matemática, Facultade de MatemáticasUniversidade de Santiago de CompostelaSantiagoSpain
  2. 2.Department of MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations