Advertisement

Admissible operations and product preserving functors

  • Jacek Gancarzewicz
  • Wlodzimierz Mikulski
  • Zdzislaw Pogoda
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 350)

Abstract

In the paper lifts of tensor fields of type (1, k) and (0, k) and linear connections to a product preserving functor F are studied. A concept of “admissible” operations which send a finite sequence of tensor fields into a tensor field is introduced and a general procedure to prove formulas for lifts are proposed.

Key words

product preserving functor Weil functor geometric object lift 

AMS classification

55R10 58A20 53C15 53C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Barwise: Handbook of mathematical logic, ed. North-Holland Publ. Company, (Amsterdam-New York-Oxford, 1977)Google Scholar
  2. 2.
    A. Cabras, I. Kolář: Prolongation of tangent vailed forms to Weil bundles (in preparation)Google Scholar
  3. 3.
    D. J. Eck: Product-precerving functors on smooth manifolds J. Pure Appl. Algebra 42 (1986), 133–140MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Gancarzewicz, W. Mikulski, Z. Pogoda: Natural bundles and natural liftings. Prolongations of geometric structures, Proc. Conf. on Diff. Geometry and Its Applications, Opava, 24–29 September 1992, ed. Silesian University, Opava, 1993, 281–320Google Scholar
  5. 5.
    J. Gancarzewicz, W. Mikulski, Z. Pogoda: Properties of product preserving functors, Proc. Winter School on Diff. Geometry and Its Applications, Zdikov, January 1993 (to appear)Google Scholar
  6. 6.
    J. Gancarzewicz, W. Mikulski, Z. Pogoda: Lifts of some tensor fields and linear connections to product preserving functors, Nagoya Math. J., 135(1994), 1–41MathSciNetzbMATHGoogle Scholar
  7. 7.
    G. Kainz, P. Michor: Natural transformations in differential geometry, Czech. Math. J. 37(112), 1987, 584–607MathSciNetGoogle Scholar
  8. 8.
    I. Kolář: On natural operators on vector fields, Ann. Global Analysis and Geometry, 6(2) (1988), 109–117zbMATHCrossRefGoogle Scholar
  9. 9.
    I. Kolář, P. W. Michor, J. Slovák: Natural operations in differential geometry, ed. Spriger Verlag, (Berlin, 1993)zbMATHGoogle Scholar
  10. 10.
    I. Kolář, J. Slovák: On the geometric functors on manifolds, Suppl. ai Rendiconti del Cir. Math, di Palermo, 21(1989), 223–233Google Scholar
  11. 11.
    J. Lehmann-Lejeune: Integrabilité des G-structures definit par une 1-forme 0-deformable á valeurs dans le fibré tangent, Ann. Inst H. Poincaré, Grenoble 16, 2(1966), 327–387Google Scholar
  12. 12.
    O. O. Luciano: Categories of multiplicative functors and Morimoto’s conjecture, Preprint 46, Inst. Fourier, Laboratoire des Mathématiques, Grenoble, 1986Google Scholar
  13. 13.
    A. Morimoto: Prolongations of geometric structures, Lect. Notes Math. Inst. Nagoya Univ. 1969Google Scholar
  14. 14.
    A. Morimoto: Liftings of some type of tensor fields and connections to tangent bundles of pr-velocities, Nagoya Math. J. 40(1970), 13–31MathSciNetzbMATHGoogle Scholar
  15. 15.
    A. Morimoto: Liftings of tensor fields and connections to tangent bundles of higher order, Nagoya Math. J. 40(1970), 99–120MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. Morimoto: Prolongations of connections to bundles of infinitely near points, J. Diff. Geom. 11(1976), 476–498MathSciNetGoogle Scholar
  17. 17.
    S. E. Salvioli: Theory of geometric objects, J. Diff. Geom. 7(1972), 257–278MathSciNetzbMATHGoogle Scholar
  18. 18.
    K. Yano, S. Kobayashi: Prolongations of tensor fields and connections to tangent bundles, J. Math. Soc. Japan, 18(1966), 194–210MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Jacek Gancarzewicz
    • 1
  • Wlodzimierz Mikulski
    • 1
  • Zdzislaw Pogoda
    • 1
  1. 1.Instytut Matematyki UJKrakówPoland

Personalised recommendations