The Differential Geometry of Cosserat Media

  • Marcelo Epstein
  • Manuel de Leon
Part of the Mathematics and Its Applications book series (MAIA, volume 350)


A geometric description of generalized Cosserat continua is developed in terms of non-holonomic frame bundles of second order. A non-holonomic G-structure is constructed by using the smooth uniformity of the material. The theory of linear connections in frame bundles permits to express the inhomogeneity by means of some tensor fields.


Principal Bundle Reference Configuration Linear Connection Frame Bundle Invariant Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Dabán, I. S. Rodrigues: On structure equations for second order connections, Differential Geometry and Its Applications, Proc. Conf. Opava (Czechoslovakia), August 24-28, 1992, Silesian University, Opava, 1993, 257-264.Google Scholar
  2. 2.
    D. Bernard: Sur la géométrie différentielle des G-structures, Ann. Inst. Fourier, 10 (1960), 151–270.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    B. A. Bilby: Continuous distributions of Dislocations, Progress in Solid Mechanics, Nort-Holland, Amsterdam, 1, (1960), 329–398.Google Scholar
  4. 4.
    F. Bloom: Modern Differential Geometric Techniques in the Theory of Continuous Distributions of Dislocations, Lecture Notes in Math., 733, Springer, Berlin, 1979.Google Scholar
  5. 5.
    E. Cartan: Oeuvres Complétes, Gauthier-Villars, Paris, 1952-1955.Google Scholar
  6. 6.
    S. S. Chern: The geometry of G-structures, Bull. Amer. Math. Soc. 72 (1966), 167–219.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    H. Cohen, M. Epstein: Remarks on uniformity in hyperelastic materials, Int. J. Solids Structures, 20, 3 (1984), 233–243.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    L. A. Cordero, C.T.J. Dodson, M. de León: Differential Geometry of Frame Bundles, Mathematics and Its Applications, Kluwer, Dordrecht, 1989.Google Scholar
  9. 9.
    E. Cosserat, F. Cosserat: Théorie des corps déformables, Hermann, Paris, 1909.Google Scholar
  10. 10.
    M. de León, M. Epstein: On the integrability of second order G-structures with applications to continuous theories of dislocations, Reports on Mathematical Physics, 33 (3) (1993), 419–436.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    M. de León, M. Epstein: Corps matériels de degre superieur, C. R. Acad. Sc. Paris, 319, Ser. I, (1994), 615–620.zbMATHGoogle Scholar
  12. 12.
    M. de León, M. Epstein: The geometry of uniformity in second-grade elasticity, Acta Mechanica, (1995).Google Scholar
  13. 13.
    M. de León, M. EPSTEIN: Material bodies, elasticity and differential geometry. Proceedings of the II Fall Workshop on Differential Geometry and its Applications, Barcelona, September 20-21, 1993, Universitat Politécnica de Catalunya, 1994, pp. 47-54.Google Scholar
  14. 14.
    M. de León, M. Epstein: On the homogeneity of media with microstructure, work in progress.Google Scholar
  15. 15.
    M. de León, E. Ortacgil: On frames defined by horizontal spaces, Czecoslovak Mathematical Journal, (1995).Google Scholar
  16. 16.
    CH. Ehresmann: Introduction á la théorie des structures infinitésimales et des pseudogroupes de Lie, Colloque de Topologie Géometrie Différentielle, Strasbourg, (1953), 97–100.Google Scholar
  17. 17.
    CH. Ehresmann: Extension du calcul des jets aux jets non holonomes, C. R. Acad. Sc. Paris, 239 (1954), 1762–1764.MathSciNetzbMATHGoogle Scholar
  18. 18.
    CH. Ehresmann: Applications de la notion de jet non holonome, C. R. Acad. Sc. Paris, 240 (1955), 397–399.MathSciNetzbMATHGoogle Scholar
  19. 19.
    CH. Ehresmann: Les prolongements d’un espace fibré différentiable, C. R. Acad. Sc. Paris, 240 (1955), 1755–1757.MathSciNetzbMATHGoogle Scholar
  20. 20.
    CH. Ehresmann: Sur les connexions d’ordre supérieur, Atti V Congresso del Unione Mat. It., Cremonese, Roma, (1956), 344-346.Google Scholar
  21. 21.
    M. Elzanowski, M. Epstein, J. Sniatycki: G-structures and material homogeneity, Journal of Elasticity, 23 (1990), 167–180.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    M. Elzanowski, M. Epstein: On the symmetry group of second-grade materials, Int. J. Non-Linear Mechanics, 27, 4 (1992), 635–638.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    M. Elzanowski, S. Prishepionok: Locally Homogeneous Configurations of Uniform Elastic Bodies, Reports on Mathematical Physics, 31 (1992), 229–240.MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Elzanowski, S. Prishepionok: Connections on higher order frame bundles, Proceedings Colloquium on Differential Geometry, July 25-30, 1994, Debrecen, Hungary.Google Scholar
  25. 25.
    M. Elzanowski, S. Prishepionok: Higher grade material structures, Preprint Portland State University, 1994.Google Scholar
  26. 26.
    M. Epstein, M. de León: Dislocaciones distribuidas en medios elásticos, Adas del XI Congreso Nacional de Ingenieria Mecánica, Valencia, Noviembre 16-18, 1994. Anales de Ingenieria Mecanica, 10, vol. 2, (1994), 577-583.Google Scholar
  27. 27.
    M. Epstein, M. de León: Homogeneity conditions for generalized Cosserat media, Submitted to Zeitschrift für angewandte Mathematik und Physik.Google Scholar
  28. 28.
    M. Epstein, M. de León: Mathematical Theory of Cosserat Media, Submitted to Proceedings of the Royal Society of London. Preprint IMAFF-CSIC.Google Scholar
  29. 29.
    J. L. Ericksen, C. Truesdell: Exact theory of stress and strain in rods and shells, Arch. Rat. Mech. and Anal. 1, (1958), 296–323.MathSciNetGoogle Scholar
  30. 30.
    A. C. Eringen, CH. B. Kafadar: Polar Field Theories, Continuum Physics, Ed. A. Cemal Eringen, vol. IV, Part I, pp. 1–73, Academic Press, New York, 1976.Google Scholar
  31. 31.
    A. Fujimoto: Theory of G-structures, Publications of the Study Group of Geometry, Vol. I. Tokyo, 1972.zbMATHGoogle Scholar
  32. 32.
    G. Grioli: Elasticità asimmetrica, Ann. di Mat. pura ed appl., Ser. IV 50 (1960), 389–417.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    T.J. JAramillo: A generalization of the energy function of elasticity theory, Dissertation, Univ. of Chicago, 1929.Google Scholar
  34. 34.
    S. Kobayashi, K. Nomizu: Foundations of Differential Geometry, vol. I, Interscience Publishers, New York, 1963.zbMATHGoogle Scholar
  35. 35.
    S. Kobayashi: Transformations Groups in Differential Geometry, Springer, Berlin-New York, 1972.Google Scholar
  36. 36.
    I. Kolář: Generalized G-structures and G-structures of higher order, Boll. Un. Mat. Ital. (4) 12, no. 3, suppl (1975), 245–256.MathSciNetGoogle Scholar
  37. 37.
    I. Kolář, P. W. Michor, J. Slovák: Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.zbMATHGoogle Scholar
  38. 38.
    K. Kondo: Geometry of Elastic Deformation and Incompatibility, Memoirs of the Unifying Study of the Basic Problems in Engineering Sciences by Means of Geometry, Tokyo Gakujutsu Benken Fukyu-Kai, 1955, IC.Google Scholar
  39. 39.
    E. Kröner: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Rational Mech. Anal. 4, (1960), 273–334.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    R. Lardner: Mathematical theory of dislocations and fracture, Mathematical Expoxitions, 17, University of Toronto Press, Toronto, 1974.Google Scholar
  41. 41.
    P. Libermann: Sur la géométrie des prolongements des spaces fibrés vectoriels, Ann. Inst. Fourier, 14 (1) (1964), 145–172.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    P. Libermann: Surconnexions et connexions affines spéciales, C. R. Acad. Sc. Paris, 261 (1965), 2801–2804.MathSciNetzbMATHGoogle Scholar
  43. 43.
    P. Libermann: Connexions d’ordre supérieur et tenseur de structure, Atti del Convegno Int. di Geometria Differenziale, Bologna, 28-30, September 1967, Ed. Zanichelli, Bologna, 1967, 1-18.Google Scholar
  44. 44.
    P. Libermann: Parallélismes, J. Differential Geometry, 8 (1973), 511–539.MathSciNetzbMATHGoogle Scholar
  45. 45.
    P. Molino: Théorie des G-Structures: Le Probléme d’Equivalence, Lecture Notes in Math., 588, Berlin-New York, Springer, 1977.zbMATHGoogle Scholar
  46. 46.
    R. D. Mindlin: Microstructure in Linear elasticity, Arch. Rational Mech. Anal., 16, (1964), 51–78.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    F. R. Nabarro: Theory of Crystal Dislocations, Dover Publ., Inc., New York, 1987.Google Scholar
  48. 48.
    W. Noll: Materially Uniform Simple Bodies with Inhomogeneities, Arch. Rational Mech. Anal., 27, (1967), 1–32.MathSciNetCrossRefGoogle Scholar
  49. 49.
    V. Oproiu: Connections in the semiholonomic frame bundle of second order, Rev. Roum. Math. Pures et AppL, XIV, 5 (1969), 661–672.MathSciNetGoogle Scholar
  50. 50.
    J. F. Pommaret: New differential geometric methods in continuum mechanics: differential sequences and Cosserat media, Proceedings of the Conference on Differential Geometry and Its Applications, Nové Město na Moravě, Czechoslovakia, September 5-9, 1983. J.@@E. Purkyně University, Brno, 1984, pp. 213-219.Google Scholar
  51. 51.
    J. F. Pommaret: Lie Pseudogroups and Mechanics, Mathematics and Its Applications, Gordon and Breach, New York, 1988.Google Scholar
  52. 52.
    J. F. Pommaret: Suites différentielles et calcul variationnel, C. R. Acad. Sci. Paris, 320, Sér. I (1995), 207–212.MathSciNetzbMATHGoogle Scholar
  53. 53.
    J. F. Pommaret: Partial Differential Equations and Group Theory, Kluwer Acad. Publ., Dordrecht, 1994.zbMATHGoogle Scholar
  54. 54.
    A. Roux: Jet et connexions, Publ. Dep. de Mathématiques, Lyon, 1975.Google Scholar
  55. 55.
    S. Sternberg: Lectures on Differential Geometry, 2nd edition, Chelsea, New York, 1983.zbMATHGoogle Scholar
  56. 56.
    R. Tiffen, A. C. Stevenson: Elastic isotropy with body force and couple, Quart. J. Mech. and Applied Math. 9 (1956), 306–312.zbMATHCrossRefGoogle Scholar
  57. 57.
    R. A. Toupin: Elastic materials with couple-stresses, Arch. Rational Mech. Anal. 11, (1962), 385–414.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    R. A. Toupin: Theories of Elasticity with Couple-stress, Arch. Rational Mech. Anal. 17, (1964), 85–112.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    C. Truesdell, R. A. Toupin: Principles of Classical Mechanics and Field Theory, Handbuch der Physik, Vol. III/1 Berlin-New York, Springer, 1960.Google Scholar
  60. 60.
    C. Truesdell, W. Noll: The Non-Linear Field Theories of Mechanics, Handbuch der Physik, Vol. III/3, Berlin-New York, Springer, 1965.Google Scholar
  61. 61.
    C.C. Wang, C. Truesdell: Introduction to rational elasticity, Noordhoff International Publishing, Leyden, 1973.zbMATHGoogle Scholar
  62. 62.
    C. C. Wang: On the Geometric Structures of Simple Bodies, a Mathematical Foundation for the Theory of Continuous Distributions of Dislocations, Arch. Rational Mech. Anal., 2 7, (1967), 33-94.Google Scholar
  63. 63.
    P. CH. Yuen: Higher order frames and linear connections, Cahiers de Topologie et Geometrie Différentielle, XII, 3 (1971), 333–371.MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Marcelo Epstein
    • 1
  • Manuel de Leon
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Fundamental Consejo Superior de Investigaciones CientíficasInstituto de Matemáticas y FísicalMadridSpain

Personalised recommendations