Hypercomplex structures on quaternionic manifolds

  • D. V. Alekseevsky
  • S. Marchiafava
Part of the Mathematics and Its Applications book series (MAIA, volume 350)


Let (M,Q) be a quaternionic manifold. Conditions for existence of hypercomplex structures H subordinated to the quaternionic structure Q are determined, in particular for a quaternionic Kähler manifold (M,g,Q). Some special systems of almost hypercomplex structures which are admissible for Q are also considered and their relationships with quaternionic transformations are indicated.


Scalar Curvature Curvature Tensor Quaternionic Structure Weyl Tensor Hermitian Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.V. Alekseevsky and S. Marchiafava, Quaternionic-like structures on a manifold: Note I. 1-integrability and integrability conditions - Note II, Automorphism groups and their interrelations. Rend. Mat. Acc. Lincei s.9, 4 (1993), 43–52, 53-61MathSciNetGoogle Scholar
  2. 2.
    D.V. Alekseevsky and S. Marchiafava, Quaternionic structures on a manifold and subordinated structures. Preprint 94/14 Dipartimento di Matematica “G. Castelnuovo”, Universita’ degli Studi di Roma “La Sapienza”, 1994Google Scholar
  3. 3.
    D.V. Alekseevsky and S. Marchiafava, Transformation groups of a quaternionic manifold. In preparationGoogle Scholar
  4. 4.
    D. Bernard, Sur la géométric differentielle des G-structures. Ann. Inst. Fourier (Grenoble), 10 (1960), 151–270MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    A. Besse, Einstein manifolds. Ergebnisse der Math. 3 Folge Band 10, Springer-Verlag, Berlin and New York, 1987Google Scholar
  6. 6.
    E. Bonan, Sur les G-structures de type quaternionien. Cahiers de topologie et géométrie différentielle, 9 (1967), 389–461MathSciNetGoogle Scholar
  7. 7.
    S.S. Chern, The geometry of G-structures. Bull. Amer. Math. Soc. 72 (1966), 167–219MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    S. Fujimura, Q-connections and their changes on almost quaternionic manifolds. Hokkaido Math. J. 5 (1976), 239–248MathSciNetzbMATHGoogle Scholar
  9. 9.
    D. Joyce, Compact hypercomplex and quaternionic manifolds. J. Diff. Geom. 35 (1992), 743–761MathSciNetzbMATHGoogle Scholar
  10. 10.
    D. Joyce Manifolds with many complex structures. Preprint, 1993Google Scholar
  11. 11.
    R.S. Kulkarni, On the principle of uniformization. J. Diff. Geom., 13 (1978), 109–138zbMATHGoogle Scholar
  12. 12.
    S. Marchiafava, Sulle varietá a struttura quaternionale generalizzata. Rend, di Matematica, 3, ser. VI (1970), 529–545MathSciNetGoogle Scholar
  13. 13.
    V. Oproiu, Almost quaternal structures. An. st. Univ. Iazi, 23 (1977), 287–298MathSciNetzbMATHGoogle Scholar
  14. 14.
    V. Oproiu, Integrability of almost quaternal structures. An. st. Univ. “AI.I. Cuza” Iazi 30 (1984), 75–84MathSciNetzbMATHGoogle Scholar
  15. 15.
    P. Piccinni, On the infinitesimal automorphisms of quaternionic structures. J. de Math. Pures et Appl., 72 (1993), 593–605MathSciNetzbMATHGoogle Scholar
  16. 16.
    M. Pontecorvo, Complex structures on quaternionic manifolds. Diff. Geometry and its Applications, 4 (1992), 163–177MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Salamon, Differential geometry of quaternionic manifolds. Ann. Scient. Ec. Norm. Sup., 4-eme serie 19 (1986), 31–55MathSciNetGoogle Scholar
  18. 18.
    S. Salamon, Riemannian geometry and holonomy groups. Ed. Longman Scientific & Technical, UK 1989zbMATHGoogle Scholar
  19. 19.
    A. Swann, HyperKähler and Quaternionic Kahler Geometry. PhD Thesis, Oxford 1990Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • D. V. Alekseevsky
    • 1
  • S. Marchiafava
    • 2
  1. 1.Sophus Lie Center (Moskow)MoskowRussia
  2. 2.Dipartimento di MatematicaUniversita’ di Roma IRomaItaly

Personalised recommendations