Skip to main content

The IAA-influx carrier at the plasmalemma: Properties, regulation, and function in auxin transduction

  • Chapter
  • 89 Accesses

Abstract

The signal perceotion of auxin was investigated by in vitro binding assays using both microsomal and purified plasma membrane preparations obtained from auxin-dependent carrot suspension cultures at the logarithmic growth phase. All the results presented point to the occurrence of an IAA-influx, but not to an auxin receptor, at the plant plasma membrane. Furthermore it is assumed that the activity of the IAA-influx carrier is regylated by a GTP-binding protein. At take the physicochemical properties of IAA into considertion the experimental findings will be discussed in order to suggest that the IAA-influ carrier at the plasmalemma is the site responsible for signal perception and transduction of auxin by plant cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. André B and Scherer GFE (1991) Stimulation by auxin of phospholipase A in membrane vesicles from an auxin-sensitive tissue is mediated by an auxin receptor. Planta 185: 209–214

    Article  Google Scholar 

  2. Barbier-Brygoo H, Ephritikhine G, Klämbt D, Ghislain M and Guern J (1989) Functional evidence for an auxin receptor at the plasmalemfna of tobacco mesophyll protoplasts. Proc Natl Acad Sci USA 86: 891–895

    Article  PubMed  CAS  Google Scholar 

  3. Benning C (1986) Evidence supporting a model of voltage-dependent uptake of auxin into Cucurbita vesicles. Planta 169: 228–237

    Article  CAS  Google Scholar 

  4. Briggs WR and Baskin TI (1988) Phototropism in higher plants — Controversies and caveats. Bot Acta 101: 133–139

    CAS  Google Scholar 

  5. Brightman AO, Barr R, Crane FL and Morré DJ (1988) Auxin—stimulated NADH oxidase purified from plasma membrane of soybean. Plant Physiol 86: 1264–1269

    Article  PubMed  CAS  Google Scholar 

  6. Brightman AO and Morré DJ (1991) NADH oxidase of the plasma membrane of plants. In: Crane FL, Morré DJ and Low HE (eds) Oxidoreduction at the Plasma Membrane: Relation to Growth and Transport. Vol II Plants, pp 85–110. Boca Raton, Ann Arbor, Boston: CRC Press

    Google Scholar 

  7. Brummell DA and Hall JL (1987) Rapid cellular responses to auxin and the regulation of growth. Plant Cell Environ 10: 523–543

    CAS  Google Scholar 

  8. Ettlinger C and Lehle L (1988) Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331: 176–178

    Article  PubMed  CAS  Google Scholar 

  9. Hertel R (1983) The mechanism of auxin transport as a model for auxin action. Z Pflanzenphysiol 112: 53–67

    CAS  Google Scholar 

  10. Hertel R (1994) A critical view on proposed hormone action: the example of auxin. In: Smith CJ, Gallan J, Chiatante D and Zocchi G (eds) Biochemical Mechanisms Involved in Plant Growth Regulation, pp 1–15. London: Clarendon Press

    Google Scholar 

  11. Hesse T, Feldwisch J, Balshüsemann D, Bauw G, Puype M, Vandekerckhove J, Löbler M, Klämbt D, Schell J and Palme K (1989) Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin. EMBO J 8: 2453–2461

    PubMed  CAS  Google Scholar 

  12. Hicks GR, Rayle DL, Jones AM and Lomax TL (1989) Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin. Proc Natl Acad Sci USA 86: 4948–4952

    Article  PubMed  CAS  Google Scholar 

  13. Inohara N, Shimomura S, Fukui T and Futai M (1989) Auxin—binding protein located in the endoplasmic reticulum of maize shoots: molecular cloning and complete primary structure. Proc Natl Acad Sci USA 86: 3564–3568

    Article  PubMed  CAS  Google Scholar 

  14. Jacobs M and Gilbert SF (1983) Basal localization of the pre—sumptive auxin transport carrier in pea stem cells. Science 220: 1297–1300

    Article  PubMed  CAS  Google Scholar 

  15. Jacobs M and Hertel R (1978) Auxin binding to subcellular fractions from Cucurbita hypocotyls: in vitro evidence for an auxin transport carrier. Planta 142: 1–10

    Article  CAS  Google Scholar 

  16. Jones AM (1990) Do we have the auxin receptor yet? Physiol Plant 80: 154–158

    Article  CAS  Google Scholar 

  17. Klämbt D (1990) A view about the function of auxin-binding proteins at plasma membranes. Plant Mol Biol 14: 1045–1050

    Article  PubMed  Google Scholar 

  18. Knauth B and Klämbt D (1990) Is cell elongation regulated by extracellular auxin? Bot Acta 103: 103–106

    CAS  Google Scholar 

  19. Larsson C, Widell S and Kjellbom P (1987) Preparation of high-purity plasma membranes. In: Packer L and Douce R (eds) Plant Cell Membranes, pp 558–568. New York: Academic Press

    Chapter  Google Scholar 

  20. Löbler M and Klämbt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L) II. Localization of a putative auxin receptor. J Biol Chem 260: 9854–9859

    PubMed  Google Scholar 

  21. Lützelschwab M, Asard H, Ingold U and Hertel R (1989) Het—erogeneity of auxin-accumulating membrane vesicles from Cucurbita and Zea: a possible reflection of cell polarity. Planta 177: 304–311

    Article  Google Scholar 

  22. Mennes AM, Boot EJ, van der Zaal EJ, Hooykaas PJJ and Libbenga KR (1994) Auxin-regulated gene expression in tobacco. Intern Symp on Plant Hormone Signal Perception and Transduction, September 4–10, 1994, Moscow, Russia. Abstract pp 54

    Google Scholar 

  23. Napier RM and Venis MA (1991) From auxin-binding protein to plant hormone receptor? Trends Biochem Sci 16: 72–75

    Article  PubMed  Google Scholar 

  24. Nick P, Schäfer E and Furuya M (1992) Auxin redistribution during first positive phototropism in corn coleoptiles. Micro—tubule reorientation and the Cholodny-Went hypothesis. Plant Physiol 99: 1302–1308

    Article  PubMed  CAS  Google Scholar 

  25. Nickel R (1992) Das auxinstimulierte Streckungswachstum und sein molekularer Mechanismus. Vergleichende in vivo —und in vitro — Untersuchungen am Hypokotyl von Phaseolus vulgaris. PhD thesis, Fakultät für Biologie, Ruprecht-Karls-Universität, Heidelberg

    Google Scholar 

  26. Nissen P (1985) Dose responses of auxins. Physiol Plant 65: 357–374

    Article  CAS  Google Scholar 

  27. Palme K and Schell J (1991) Plant signaling: auxin receptors take shape. Curr Biol 1: 228–230

    Article  PubMed  CAS  Google Scholar 

  28. Parker KE (1991) Auxin metabolism and transport during grav-itropism. Physiol Plant 82: 477–482

    CAS  Google Scholar 

  29. Raven JA (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74: 163–175

    Article  CAS  Google Scholar 

  30. Rubery PH (1980) The mechanism of transmembrane auxin transport and its relation to the chemiosmotic hypothesis of the polar transport of auxin. In: Skoog F (ed) Plant Growth Substances 1979. Proc 10th Intern Conf Plant Growth Sub—stances, Madison, Wisconsin, July 22–26, 1979, pp 50–60. Berlin, Heidelberg, New York: Springer-Verlag

    Google Scholar 

  31. Rubery PH (1990) Phytotropins: receptors and endogenous ligands. Symp Soc Exp Biol 44: 119–146

    PubMed  CAS  Google Scholar 

  32. Rubery PH and Sheldrake AR (1973) Effect of pH and surface charge on cell uptake of auxin. Nat New Biol 244: 285–288

    PubMed  CAS  Google Scholar 

  33. Taylor CW (1990) The role of G proteins in transmembrane signaling. Biochem J 272: 1–13

    PubMed  CAS  Google Scholar 

  34. Tillmann U, Viola G, Kayser B, Siemeister G, Hesse T, Palme K, Löbler M and Klämbt D (1989) cDNA clones of the auxin-binding protein from corn coleoptiles (Zea mays L): isolation and characterization by immunological methods. EMBO J 8: 2463–2467

    PubMed  CAS  Google Scholar 

  35. Vesper MJ and Kuss CL (1990) Physiological evidence that the primary site of auxin action in maize coleoptiles is an intracellular site. Planta 182: 486–491

    Article  CAS  Google Scholar 

  36. Young LM, Evans ML and Hertel R (1990) Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays. Plant Physiol 92: 792–798

    Article  PubMed  CAS  Google Scholar 

  37. Zbell B and Walter C (1987) About the search for the molecular action of high-affinity auxin binding sites on membrane-localized rapid phosphoinositide metabolism in plant cells. In: Klämbt D (ed) Plant Hormone Receptors, pp 141–153. Berlin, Heidelberg, New York: Springer-Verlag

    Google Scholar 

  38. Zbell B and Walter-Back C (1988) Signal transduction of auxin on isolated plant cell membranes: Indications for a rapid polyphosphoinositide response stimulated by indoleacetic acid. J plant Physiol 133: 353–360

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zbell, B. (1996). The IAA-influx carrier at the plasmalemma: Properties, regulation, and function in auxin transduction. In: Smith, A.R., et al. Plant Hormone Signal Perception and Transduction. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0131-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0131-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6546-7

  • Online ISBN: 978-94-009-0131-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics