Skip to main content

14–3–3 Protein homologues play a central role in the fusicoccin signal transduction pathway

  • Chapter
  • 90 Accesses

Abstract

The plasma membrane located fusicoccin binding protein (FCBP) is an essential element in the fusicoccin (FC) signal transduction pathway. We obtained primary sequence information for the 31 kD subunit of the FCBP. These sequences showed that the FCBP is homologous to members of the 14–3–3 protein family. Both the 31 and 30 kD subunits cross-react with 14–3–3 antibodies. In native form the FCBP occurs as a dimer, but it is also part of a complex with higher molecular mass. The monomeric forms of the FCBP (the 30 and 31 kD subunits) do not have 3H-FC binding activity. We discuss how the FCBP, as a member of the 14–3–3 protein family, may be able to bind FC and how the FC-signal is transduced to the effector protein, the H+-ATPase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aducci P, Federico R and Ballio A (1980) Interaction of a high molecular weight derivative of fusicoccin with plant membranes. Phytopath Medit 19:187–188

    CAS  Google Scholar 

  2. Aducci P, Ballio A, Fogliano V, Fullone MR, Marra M and Proietti N (1993) Purification and photoaffinity labelling of fusicoccin receptors from maize. Eur J Biochem 214:339–345

    Article  PubMed  CAS  Google Scholar 

  3. Aitken A, Collinge DB, Van Heusden GPH, Isobe T, Rose-boom, PH, Rosenfeld G and Soll J (1992) 14–3–3 Proteins. Trends Biochem Sci 17:498–501

    Article  PubMed  CAS  Google Scholar 

  4. Brandt J, Thordal-Christensen H, Vad K, Gregersen P and Collinge DB (1992) A Pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant J 2: 815–820

    PubMed  CAS  Google Scholar 

  5. Chen F and Wagner PD (1994) 14–3–3 proteins bind to histone and affect both histone phosphorylation and dephosphorylation. FEBS Lett 347: 128–132

    Article  PubMed  CAS  Google Scholar 

  6. De Boer AH, Lomax TL, Sandstrom RP and Cleland RE (1987) Solubilization of the fusicoccin receptor and a protein kinase from highly purified plasma membrane from oat roots. In: Wirtz KWA (ed) Membrane Receptors, Dynamics and Energetics, pp 181–190. Plenum Pulbishing, Corporation

    Google Scholar 

  7. De Boer AH, Watson BA and Cleland RE (1989) Purification and identification of the fusicoccin binding protein from oat root plasma membrane, Plant Physiol 89: 250–259

    Article  PubMed  Google Scholar 

  8. De Vetten NC, Lu G and Ferl RJ (1992) A maize protein associated with the G-box binding complex has homology to brain regulatory proteins. The Plant Cell 4: 1295–1307

    Article  PubMed  Google Scholar 

  9. Du X, Harris SJ, Tetaz TJ, Ginsberg MH and Berndt MC (1994) Association of a phospholipase A2 (14–3–3 protein) with the platelet glycoprotein Ib-IX complex. J Biol Chem 269:18287–18290

    PubMed  CAS  Google Scholar 

  10. Ferl RJ, Lu GH and Bowen BW (1994) Evolutionary implications of the family of 14–3–3 brain protein homologs in Arabidopis thaliana. Genetica 92: 129–138

    Article  PubMed  CAS  Google Scholar 

  11. Feyerabend M and Weiler EW (1988) Characterization and localization of fusicoccin-binding sites in leaf tissues of Vicia faba L. probed with a novel radioligand. Planta 174: 115–122

    Article  CAS  Google Scholar 

  12. Feyerbend M and Weiler EW (1989) Photoaffinity labelling and partial purification of the putative plant receptor for the fungal wilt-inducing toxin, fusicoccin. Planta 178:282–290

    Article  Google Scholar 

  13. Freed E, Symons M, Macdonald SG, McCormick F and Ruggieri R (1994) Binding of 14–3–3 proteins to the protein kinase Raf and effects on its activation. Science 265: 1713–1716

    Article  PubMed  CAS  Google Scholar 

  14. Fu H, Coburn J and Collier RJ (1993) The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14–3–3 protein family. Proc Natl Acad Sci USA 90: 2320–2324

    Article  PubMed  CAS  Google Scholar 

  15. Ichimura T, Isobe T, Okuyama T, Takahashi N, Araki K, Kuqwano R and Takahashi Y (1987) Brain 14–3–3 protein is an activator that activates trytophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II. FEBS Lett 219: 79–82

    Article  PubMed  CAS  Google Scholar 

  16. Irie K, Gotoh Y, Yashar BM, Errede B, Nishida E and Matsumoto K (1994) Stimulatory effects of yeast and mammalian 14–3–3 proteins on the Raf proteins kinase. Science 265: 1716–1719

    Article  PubMed  CAS  Google Scholar 

  17. Johansson F, Sommarin M and Larsson C (1993) Fusicoccin activates the plasma membrane H+ -ATPase by a mechanism involving the C-terminal inhibitory domain. The Plant Cell 5: 321–327

    Article  PubMed  CAS  Google Scholar 

  18. Korthout HAAJ, Van der Hoeven PCJ, Wagner MJ, Van Hunnik E and De Boer AH (1994) Purification of the fusicoccin-binding protein from oat root plasma membrane by affinity chromatography with biotinylated fusicoccin. Plant Physiol 105: 1281–1288

    PubMed  CAS  Google Scholar 

  19. Korthout HAAJ and De Boer AH (1994) A fusicoccin binding protein belongs to the family of 14–3–3 brain protein homologs. The plant Cell (in press)

    Google Scholar 

  20. Marra M, Fullone MR, Fogliano V, Masi S, Mattei M, Pen J and Aducci P (1994) The 30 kD protein present in purified fusioccin preparations is a 14–3–3 like protein present in purified fusioccin preparations is a 14–3–3 like protein. Plant Physiol (in press)

    Google Scholar 

  21. Marre, EA (1979) Fusicoccin: A tool in physiology. Annu Rev Plant Physiol 30: 273–288

    Article  CAS  Google Scholar 

  22. Meyer C, Feierabend M and Weiler EW (1989) Fusicoccin-binding proteins in Arabidopis thaliana (L.) Heynh. Plant Physiol 89: 692–699

    Article  PubMed  CAS  Google Scholar 

  23. Mochly-Rosen D, Khaer H, Lopex J and Smith BL (1991) Intracellular receptors for activated protein kinase C. J Biol Chem 266: 14866–14868

    PubMed  CAS  Google Scholar 

  24. Oeking C and Weiler EW (1991) Characterization and purification of the fusicoccin-binding complex from plasma membranes of Commelina communis. Eur. J. Biochem. 199: 685–689

    Article  Google Scholar 

  25. Rasi-Caldogno F, Pugliarello MC, Olivari C and DeMichelis MI (1993) Conntrolled proteolysis mimics the effect of fusicoccin on the plasma membrane H+ -ATPase. Plant Physiol 103: 391–398

    Google Scholar 

  26. Robinson K, Jones D, Patel Y, Martin H, Madrazo J, Martin S, Howell S, Elmore M, Finnen MJ and Aitken A (1994) Mechanism of inhibition of protein kinase C by 14–3–3 isoforms. Biochem J 299: 853–861

    PubMed  CAS  Google Scholar 

  27. Roth D, Morgan A, Martin H, Jones D, Martens GJM, Aitken A and Burgoyne RD (1994) Characterization of 14–3–3 proteins in adrenal chromaffin cells and demonstration of isoform-specific phospholipid binding. Biochem J 301: 305–310

    PubMed  CAS  Google Scholar 

  28. Scott IM (1992) Fusioccin-induced changes in the translatable RNAs of etiolated pea stem tissue. J Exp Bot 43: 1361–1365

    Article  CAS  Google Scholar 

  29. Sutherland C, Alterio J, Campbell DG, Le Bourdelles B, Mallet J, Haavik J and Cohen P (1993) Phosphorylation and activation of human tyrosine hydroxylase in vitro by mitogen-activated protein (MAP) kinase and MAP-kinase-activated kinases. Eur J Biochem 217: 715–722

    Article  PubMed  CAS  Google Scholar 

  30. Toker A, Ellis CA, Sellers LA and Aitken A (1990). Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14–3–3 protein. Eur J Biochem 191: 421–429

    Article  PubMed  CAS  Google Scholar 

  31. Van Heusden GPH, Wenzel TJ, Lagendijk EL, Streensma HY, and Van den Berg JA (1992) Characterization of the yeast BMH1 gene encoding a putative protein homologous to mammalian protein kinase II activators and protein kinase C inhibitors. FEBS Lett 302: 145–150

    Article  PubMed  Google Scholar 

  32. Vera-Estrella R, Barkla BJ, Jiggins VJ and Blumwald E (1994) Plant defense response to fungal pathogens. Plant Physiol 104: 209–215

    PubMed  CAS  Google Scholar 

  33. Weiler EW, Meyer C, Oecking C, Feyerabend M and Mithofer A (1990) The fusicoccin receptor of higher plants. In: Lamb CJ, Beachy RN (eds) Plant Gene Transfer, pp 153–164. New York: Wiley-Liss

    Google Scholar 

  34. Zupan LA, Steffens DL, Berry CA, Landt M and Gross RW (1992) Cloning and expression of a human 14–3–3 protein mediating phospholipolysis. J Biol Chem 267: 8707–8710

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

De Boer, A.H., Korthout, H.A.A.J. (1996). 14–3–3 Protein homologues play a central role in the fusicoccin signal transduction pathway. In: Smith, A.R., et al. Plant Hormone Signal Perception and Transduction. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0131-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0131-5_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6546-7

  • Online ISBN: 978-94-009-0131-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics